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Forecasting Global Health

As a bridge between the largely conceptual 
discussion of Chapter 2 and the forecasting 
analyses to come, this chapter turns to the more 
technical topic of how we can best forecast 
global health futures. We can differentiate tools 
for looking at the future of global health on 
several dimensions of coverage and aggregation: 
whether they are country-specific or multi-
country; whether they focus on morbidity, 
mortality, or both; whether they treat health 
in the aggregate or consider specific causes of 
morbidity and mortality; whether they forecast 
for 10 years or 25 years or even more. 

We can also talk about them with respect to 
their concern with, and treatment of, related 
human development issue areas: whether 
they consider demographics, economics, 
and socio-political characteristics explicitly 
and dynamically in interaction with health; 
whether they consider primarily the impact 
of such other issues on health or also look to 
the implications of health for other aspects 
of human development. Further, we can 

distinguish tools and models in terms of their 
basic methodological characteristics—whether 
they focus on very select driving variables or 
more broadly and structurally portray multiple 
interacting determinants of human health; 
whether they tend primarily to be accounting 
systems that exogenously (externally) provide 
assumptions about change or whether they 
more dynamically and endogenously represent 
households, governments, and other potential 
agents in interaction.

As always in thinking about the future, 
the most important dimension on which to 
understand tools and their use is their purpose. 
We can identify at least three interrelated 
purposes of health forecasting systems, very 
much related to the purposes of this volume:

1.	� to understand better where patterns of 
human development appear to be taking 
us with respect to global health, giving 
attention to the distribution of disease 
burden and the patterns of change in it
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2.	� to consider opportunities for intervention and 
achievement of alternative health futures, 
enhancing the foundation for decisions and 
actions that improve health

3. �to prepare society for the demographic and 
other broad (for instance, economic and 
socio-political) impacts of changing health 
patterns

This chapter reviews many of the existing 
forecasting tools and identifies strengths and 
weaknesses relative to such purposes. It also 
explains the approach of this volume using the 
International Futures (IFs) modeling system. We 
begin with some information about that system 
because it provides the broader context of our 
health model and analysis with it.

Integrating Health with Broader 
Human Development: The Larger 
IFs System
IFs is a large-scale, long-term, integrated 
global modeling system. It represents 
demographic, economic, energy, agricultural, 
socio-political, and environmental subsystems 
for 183 interacting countries.1 In support of 
this series on Patterns of Potential Human 
Progress, we have added models of education 
and health. The central purpose of IFs is to 
facilitate exploration of global futures through 
alternative scenarios. 

The goals that motivated the design of IFs 
fall generally into three categories: human 
development, social fairness and security, 
and environmental sustainability. Across 
these domains, the project draws inspiration 
from seminal writers such as Sen (1999a) 
with his emphasis on freedom and individual 
development, Rawls (1971) with his emphasis on 
fairness within society, and Brundtland (World 
Commission on Environment and Development 
1987) with her seminal definition of 
sustainability. In combination, these emphases 
provide a philosophical framework for the 
exploration of human beings as individuals, of 
human beings with one another, and of human 
beings with the environment.

Fundamentally, IFs is a thinking tool, 
allowing variable time horizons through 2100 
for exploring human leverage in pursuit of 
key goals in the face of great uncertainty. 
IFs assists with:

n	� understanding the state of the world and the 
future that appears to be unfolding 
n	� identifying tensions and inconsistencies 

that suggest political, economic, or 
other risk in the near and middle term 
(a “watch list” functionality);

n	� exploring longer-term trends and 
considering where they might be 
taking us;

n	� working through the complex dynamics 
of global systems.

n	� thinking about the future we want to see
n	� clarifying goals and priorities;
n	� developing alternative scenarios (“if-then 

statements”) about the future;
n	� investigating the leverage we may have in 

shaping the future.

Human systems fundamentally involve agents 
(economists often represent them as individuals 
in households or firms; political scientists add 
governments) interacting with one another in 
various structures (economists focus on markets; 
political scientists look to action-reaction 
systems and international regimes; sociologists 
add societies and demographic structures; 
anthropologists focus on cultures; physical 
scientists extend the reach to ecosystems). 
In general, scientists seek to understand the 
co-creation and evolution of agent behavior and 
structural characteristics.

IFs attempts to capture some of that 
richness. It is a structure-based (with extensive 
representation of underlying accounting 
systems such as demographic structures and 
the exchanges of goods, services, and finance), 
agent-class driven (so as to provide a basis for 
representing change), dynamic modeling system. 
That is, IFs represents typical behavior patterns 
of major agent-classes (households, governments, 
firms) interacting in a variety of global 
structures (demographic, economic, social, and 
environmental). The system draws on standard 
approaches to modeling specific issue areas 
whenever possible, extending those as necessary 
and integrating them across issue areas. For 
instance, the demographic model uses the typical 
“cohort-component” representation, tracking 
country-specific populations over time by age 
and sex (extended by education). Within that 
structural or accounting framework, the model 
represents the fertility decisions of households 

 The central 
purpose of IFs is to 

facilitate exploration 
of global futures 

through alternative 
scenarios. 

 IFs is a 
structure-based  
and agent-class 

driven integrated 
modeling system, 

producing forecasts 
for 183 countries 
through the year 

2100. 



Forecasting Global Health 31

(influenced by income and education) as 
well as mortality and migration patterns. 
Similarly with respect to health, we have 
attempted to build on existing approaches to 
its forecasting—particularly those of the World 
Health Organization’s Global Burden of Disease 
(GBD) project—extending those as possible and 
integrating them with the larger IFs system.

As well as being rooted in the theory of 
various disciplines and subspecializations, IFs is 
heavily data based. Data come from the various 
member organizations of the United Nations 
family and many other sources. The database 
underlying IFs, and integrated with the system 
for use by others, includes data for 183 countries 
over as much of the period since 1960 as 
possible. The model system itself runs in annual 
time-steps from its initial year (currently 2005).2 
The menu-driven interface of the IFs software 
system allows the display of historical data since 
1960 in combination with results from a base 
case and from alternative scenarios over time-
horizons from 2005 through 2100, facilitating 
user-interventions flexibly across time, issue 
area, and geography. It provides tables, standard 
graphical formats, and a basic Geographic 
Information System or mapping capability. It 
also provides specialized display formats, such as 
age-sex and age-sex-education cohort structures 
and social accounting matrices.

Figure 3.1 shows the major conceptual blocks 
of the IFs system. The elements of the technology 
block are, in fact, scattered throughout the 
model. The named linkages between blocks and 
the linkages themselves are a small illustrative 
subset, not an exhaustive listing.

The two models within the IFs system that 
interact most closely with the health model are 
the population and economic models. Some of 
the key characteristics of the population model 
are that it:

n	� represents 22 age-sex cohorts to age 100+ in 
a standard cohort-component structure (but 
computationally spreads the 5-year cohorts 
initially to 1-year cohorts and calculates 
change in 1-year time-steps);

n	� calculates change in cohort-specific fertility 
of households in response to income, 
income distribution, infant mortality (from 
the health model), education levels, and 
contraception use;

n	� uses mortality calculations from the health 
model;

n	� separately represents the evolution of HIV 
infection rates and deaths from AIDS;

n	� computes average life expectancy at birth, 
literacy rate, and overall measures of human 
development;

n	� represents migration, which ties to flows of 
remittances.

Some of the most important characteristics of 
the economic model are that it:

n	� represents the economy in six sectors: 
agriculture, materials, energy, industry, 
services, and information/communications 
technology;

n	� computes and uses input-output matrices 
that change dynamically with development 
level;

Figure 3.1 Major models in the IFs modeling system and example connections
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n	� is a general equilibrium-seeking model that 
does not assume exact equilibrium will exist 
in any given year; rather it uses inventories as 
buffer stocks and to provide price signals so 
that the model chases equilibrium over time;

n	� contains a Cobb-Douglas production function 
that (following insights of Solow and Romer) 
endogenously represents contributions to 
growth in multifactor productivity from 
human capital (education and health), social 
capital and governance, physical and natural 
capital (infrastructure and energy prices), 
and knowledge development and diffusion 
(research and development [R&D] and 
economic integration with the outside world);

n	� uses a linear expenditure system (LES) to 
represent changing consumption patterns;

n	� utilizes a “pooled” rather than a bilateral 
trade approach for international trade; 

n	� has been imbedded in a social accounting 
matrix (SAM) envelope that ties 
economic production and consumption to 
representation of intra-actor financial flows.

The socio-political model also interacts with 
the health model as well as with the economic, 
demographic, and education models. Some of its 
relevant features are that it: 

n	� represents fiscal policy through taxing and 
spending decisions;

n	� shows six categories of government spending: 
military, health, education, R&D, foreign aid, 
and a residual category;

n	� represents changes in social conditions of 
individuals (such as fertility rates, literacy 
levels, and poverty), attitudes of individuals 
(such as the level of materialism/post-
materialism of a society from the World 
Values Survey), and the social organization of 
people (such as the status of women);

n	� represents the evolution of democracy;
n	� represents the prospects for state instability 

or failure.

The environmental model of IFs, important in 
many ways for our health analysis, is not as 
developed as that of many integrated assessment 
models, but among its capabilities it:

n	� forecasts exposure to indoor air pollution from 
the use of solid fuels for heating and cooking;

n	� computes outdoor particulate concentrations 
for urban areas;

n	� forecasts atmospheric accumulations of 
carbon dioxide from fossil fuel use and 
deforestation and replicates findings 
from more extensive general circulation 
models to compute associated changes in 
temperature and precipitation, which in turn 
affect crop yields. 

Although initially developed as an educational 
tool, IFs increasingly supports research and 
policy analysis. It was a core component of a 
project exploring the New Economy sponsored 
by the European Commission (EC) in the 
TERRA project and a subsequent EC project on 
information and communication technology 
and sustainability. Forecasts from IFs supported 
Project 2020 (Mapping the Global Future) of 
the National Intelligence Council (USNIC 2004) 
and Global Trends 2025 (USNIC 2008). IFs also 
provided driver forecasts and some integrating 
analysis for the Global Environment Outlook-4 
of the United Nations Environment Programme 
(UNEP 2007).

The system facilitates scenario development 
and policy analysis via a “scenario-tree” that 
simplifies changes in framing assumptions 
and agent-class interventions. Users can save 
scenarios for development and refinement 
over time. Standard framing scenarios (such 
as those from the United Nations Environment 
Programme’s Global Environmental Outlook-4), 
are available with the model for users to 
explore and potentially develop further.

IFs is freely available to all users on-line 
at www.ifs.du.edu and in a somewhat richer 
downloadable version at the same address. 
The model’s help system contains primary 
documentation, and the website provides 
extended reports and publications. 

Before turning to the modeling of global 
health futures within IFs, we first review the 
foundations provided by other models, including 
aggregate mortality models and structural health 
models. We then discuss at some length the 
hybrid approach we have developed.

All-Cause Mortality Models
In a very real sense, health forecasting began 
as part of population forecasting, as the size 
and age structure of a population depend 
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on the relationship between fertility and 
mortality. As part of population or demographic 
forecasting, the emphasis has generally been 
on mortality as an event (e.g., mortality from 
all causes) rather than on specific causes of 
death, but there have been exceptions, such as 
special attention to HIV/AIDS.

The standard approach to forecasting 
future population size is the cohort-component 
method, which traces the movement of each 
population cohort through the life span of its 
members, subtracting out deaths at each age and 
adding new births to the bottom of the cohort 
structure. The key drivers of population change, 
beyond the simple mechanical process of aging 
(and setting aside the dynamics of migration), 
are age-specific mortality and fertility rates. 
Age-specific mortality rates determine life 
expectancy at any given year, including the 
typical specification of life expectancy at birth. 
Models that use cohort-component methods 
can also begin their analysis with specifications 
of change in life expectancy and then work 
backward to modify the age-specific mortality 
patterns according to mortality schedules 
standardized for typical populations (Coale and 
Demeny 1983). In either case, these methods 
tend to be primarily extrapolative (Bongaarts 
2005), although expert judgment may also shape 
them substantially.

The United Nations Population Division 
(UNPD) produces the most widely used 
country-level population forecasts. With the 
exception of extended attention to HIV/AIDS, 
its forecasts do not deal with causes of death 
but instead focus on life expectancy as an 
aggregate measure. UNPD has summarized its 
approach as follows:

Mortality is projected on the 
basis of models of change of life 
expectancy produced by the United 
Nations Population Division. These 
models produce smaller gains the 
higher the life expectancy already 
reached. The selection of a model 
for each country is based on recent 
trends in life expectancy by sex. 
For countries highly affected 
by the HIV/AIDS epidemic, the 
model incorporating a slow pace of 
mortality decline has generally been 

used so as to reflect a slowdown 
in the reduction of mortality risks 
not related to HIV/AIDS. (UNPD 
2009a: 24)

The United States Census Bureau also 
produces basically extrapolative global 
population forecasts by country. Its 
methodology for forecasting changes in life 
expectancy at birth involves the fitting of 
a logistic or S-shaped curve to the most 
recent estimate for life expectancy; analysts 
fit mortality by age to the forecast through 
interpolation between past rates and rates 
representing especially low mortality.3 

The International Institute of Applied 
Systems Analysis (IIASA) uses a somewhat 
different but still fundamentally aggregate 
method for forecasting mortality within a 
cohort-component model. IIASA describes 
its method as “expert argument-based 
probabilistic forecasting,” that is, the use of 
Delphi-like processes4 across multiple sources 
and expert surveys to map ranges of likely 
fertility and mortality (Lutz, Sanderson, and 
Scherbov 2004: 20). The efforts of the IIASA 
World Population Program are of special 
interest because of their purpose, namely, the 
linking of demographics to broader aspects 
of human development, such as education 
and health, and to policy-relevant aspects of 
demographics, such as the speed of population 
aging (Lutz, Sanderson, and Scherbov 2008; 
Lutz and Scherbov 2008), and population 
impacts on environmental sustainability.5

While these aggregate mortality models 
focus on population forecasting rather than 
on health forecasting, they alert us to some 
of the important characteristics that policy 
analysts and scientists increasingly want to 
see. For instance, the emphasis of the UNPD 
on HIV/AIDS as a critical uncertainty in 
population forecasting draws attention to 
the desirability of differentiating mortality 
by cause, especially when death rates from 
one or more specific causes may be rising 
and therefore behaving contrary to larger 
background patterns. And IIASA’s emphasis 
on linking the analysis of population change 
to other human systems draws attention to 
both backward and forward linkages in the 
analysis of population and health. 
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The Emergence and Development of 
Structural Models
Samuel Preston, in his foreword to a major study 
published in 2006 (Lopez et al. 2006a: xv), noted 
that “before 1990, the global disease landscape 
was perceived ‘through a glass darkly.’” Analysts 
had data on cause of death with relative accuracy 
for only a small number of countries, and 
“nowhere were estimates of disease incidence, 
prevalence, survival, and disabling sequelae 
consistently combined into population-level 
profiles of morbidity and mortality.”

Circumstances began to change in the early 
part of the 1990s through the combined efforts 
of the World Health Organization (WHO) and 
the World Bank. At that time, WHO, through 
its Global Burden of Disease project, was 
building an emerging global database of health 
statistics, and the first major study of global 
health, Disease Control Priorities in Developing 
Countries (Jamison et al.), was published in 
1993. The Disease Control Priorities project was 
sponsored by the World Bank, and served as 
the backdrop for the World Development Report 
of that year, Investing in Health (World Bank 
1993). The World Bank reports were geared 
toward identifying priorities for interventions 
to achieve rapid health improvements in 
developing countries with constrained public 
resources, and they used the emerging WHO 
database in their analyses of the disease 
burden of developing countries and targeted 
interventions. Meanwhile, WHO was developing 
protocols for estimating and projecting 
disease-specific mortality and morbidity, and 
produced The Global Burden of Disease (Murray 
and Lopez 1996b) in 1996. This truly landmark 
study included 1990 data and provided global 
projections of mortality and morbidity for over 
100 specific diseases through 2020 using new 
techniques, as discussed in the next section.

A stream of ongoing studies and reports 
from both WHO’s GBD project and the World 
Bank’s Disease Control Priorities project have 
appeared since those first reports,6 and a 
major new GBD study updated with 2005 data 
is due for release late in 2010. As a result of 
these projects, a foundation for a structural 
approach to understanding current global 
health conditions and thinking about their 
dynamics in coming years has been established, 
consolidated, and extended.

Global burden of disease
The GBD project broke new ground not only by 
focusing specifically on global health, but also 
through its methodology and approach. First, 
rather than relying heavily on extrapolative 
techniques, it identified and used independent 
variables (income, education, and time) to 
understand and anticipate health outcomes 
and changes in them. Second, it disaggregated 
total mortality into multiple causes of death, 
important because the driver-outcome 
relationships vary with cause of death as well 
as with age and sex. Together these changes 
made possible a shift to a structural approach 
to understanding and forecasting health. 

In the first GBD report (Murray and Lopez 
1996b), the GBD researchers took a major 
step by building on data for 1990 to forecast 
the burden of disease in 2000, 2010, and 
2020. As we discussed in Chapter 2, they 
also developed a measure of years lived with 
disability (YLD) and added it to years of life 
lost (YLL) to early mortality to create an 
aggregate measure of disability-adjusted life 
years (DALYs). Because Murray and Lopez used 
structural models of disease driven primarily 
by income and education, they were also 
able to develop three alternative scenarios of 
the future mortality and morbidity for over 
100 diseases based on differing income and 
education assumptions for the eight global 
regions of their analysis.

Mathers and Loncar (2006) built on 
that path-breaking work in several ways. 
In addition to drawing on newer and far 
more extensive disease data and estimates 
from 2002, they updated driver-variable 
forecasts; separated diabetes from other 
noncommunicable diseases (reflecting 
expectations of increasing overweight and 
obesity); created regression models specifically 
for low- and lower-middle-income countries; 
and developed separate projection models 
for HIV/AIDS, tuberculosis, lung cancer, 
and chronic respiratory diseases. They also 
undertook analysis at the country level 
rather than at the regional level (although 
aggregating back to the regional level for 
presentation of results), and they extended the 
forecast horizon to 2030. A subsequent update 
with 2004 data and estimates was published in 
2008 (WHO 2008a).
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The major-cause typology of disease in the 
GBD approach builds from three broad cause-
groups (Groups I, II, and III; see again Chapter 
2) and major clusters within them. Beginning 
with the 2002 update (Mathers and Loncar 
2006), all communicable diseases and maternal, 
perinatal, and nutritional conditions, with the 
exception of HIV/AIDS, constitute one cluster. 
Within Group II (noncommunicable diseases 
and conditions) the clusters are malignant 
neoplasms (excluding lung cancer), type 2 
diabetes, cardiovascular diseases, digestive 
disorders, chronic respiratory conditions, and 
other noncommunicable diseases. And within 
Group III (injuries) the clusters are road 
traffic accidents, other unintentional injuries, 
and intentional injuries. In all, in the GBD 
projections accompanying the 2002 update, 
Mathers and Loncar (2006) developed models to 
forecast mortality and morbidity for 10 major-
cause clusters and 132 specific causes within 
them, including HIV/AIDS. The same clusters 
and specific diseases were included in the 2004 
GBD update (WHO 2008a). 

As we discussed in Chapter 2, the conceptual 
foundation for GBD forecasting has been the 
use of broad distal drivers rather than directly 
causal independent variables; those drivers 
explain very high proportions of the variation 
in health outcomes. The specific distal drivers 
used for forecasting were GDP per capita (at 
purchasing power parity); years of education 
attainment of adults (extrapolated from 
the database of Barro and Lee 1996); and a 
time coefficient that in large part captures 
technological improvement. The GBD modelers 
also developed a measure of smoking impact. 
The GBD project’s use of smoking impact in 
a selected subset of disease formulations 
reflected the delayed impact of smoking on 
the incidence of smoking-related diseases, as 
well as population-specific smoking patterns 
that the GBD researchers found were not well 
forecast by distal-driver formulations alone.

The GBD approach has enabled very 
significant progress with respect to the first 
major purpose for health forecasting, namely, 
the desire to understand better possible future 
changes in health. However, because the driving 
variables (with the exception of smoking) 
are not directly causal and therefore do not 
constitute points of immediately accessible 

leverage or intervention, the approach does 
not as directly as we might desire support 
the second purpose—providing a basis for 
understanding leverage and informing decision 
and action. To move in that direction, we now 
turn to discussion of more proximate drivers of 
change in the disease burden.

Comparative risk assessment and 
forecasting
Supplementing the work of the GBD forecasters 
and moving closer to the level of human 
choice and action, WHO’s Comparative Risk 
Assessment (CRA) project has identified major 
disease risk factors and analyzed the burden of 
disease observed in a population with a given 
distribution of those risk factors, relative to 
that in a population with an alternative and 
theoretically minimal distribution of the risk 
factors, in order to quantify the impact of risk 
factors on diseases (Ezzati et al. 2004a; WHO 
2009a). The project has identified 28 risk factors 
(see Table 2.1) grouped in seven categories: 
childhood and maternal undernutrition; other 
nutrition-related risk factors and physical 
activity; sexual and reproductive health; 
addictive substantives; environmental risks; 
occupational risks; and other selected risks.

Although the CRA project has not done so, 
theoretically, one could use the analysis that 
connects these risk factors to disease burden 
to forecast change in that disease burden. It 
would, of course require the development and 
use of models that represented risk factors. 
And the effort would struggle with the complex 
interactive effects of the risk factors (their 
effects are not simply additive) and with 
missing risks (it would never be possible to 
represent all of them). We return to these 
issues later in this chapter in the discussion of 
the IFs forecasting approach. 

To date, the GBD project has not incorporated 
comparative risk assessments into its forecasting 
formulations except in the cases of (1) smoking 
impact on noncommunicable respiratory 
diseases, and (2) body mass index (BMI) on 
diabetes. Instead, efforts to explore choices 
and interventions tied to proximate risks have 
focused to a greater degree on detailed analysis 
of specific diseases and associated intervention 
options (including some attention to the role 
of larger health systems) without moving to the 
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level of forecasts.7 In short, there remains a gap 
between the GBD project’s health forecasting 
approach and the attention of those interested 
in analyzing proximate action options. The gap 
exists with respect to the level of aggregation 
of disease types in the forecasting and, to an 
even greater extent, with respect to the drivers 
used in the forecasting formulations. Specialized 
models of specific diseases are now being 
developed and are partially closing that gap.

Specialized disease-cause models and 
systems dynamics approaches
Even in the aggregate forecasting of the UNPD 
and the distal-driver-based work of the GBD, 
the projects relied in some instances on more 
specialized treatment of specific diseases and 
health risks, such as the separate modeling of 
HIV/AIDS in the otherwise aggregate mortality 
analysis of the UNPD and of smoking impact in 
the structural analysis of the GBD project. 

The Spectrum system of the Joint United 
Nations Programme on HIV/AIDS (UNAIDS) is 
an important example of a specialized model.8 
It differentiates the prevalence of HIV (the 
stock of those afflicted) from the incidence 
of new infections, mirroring the common 
distinction between stocks and flows in the 
structural analysis of systems. It further 
represents the transition or flow rates from the 
prevalence of HIV to the manifestation of AIDS, 
as well as the rate of deaths of those with AIDS 
(in part as a function of the availability of 
antiretroviral therapy). 

Although not explicitly using the terminology 
and computer software associated with systems 
dynamics, the UNPD, GBD, and UNAIDS modeling 
and forecasting of HIV/AIDS implicitly draws 
on that approach. Other efforts to examine 
specific diseases have drawn more explicitly on 
systems dynamics. For instance, Homer et al. 
(2004) described a diabetes model developed 
under the auspices of the United States Centers 
for Disease Control (CDC). Beginning with a 
generic model of chronic disease (with separate 
stocks representing the general population, 
the vulnerable population, those afflicted 
without complications, and those afflicted with 
complications), they proceeded in sessions 
with CDC staff to develop a specific model for 
diabetes. The model developers obtained data 
and parameters from a variety of sources and 

developed a base case that simulated well the 
historical growth of diagnosed adult diabetes 
in the United States after 1980. They also 
presented the model with the appropriate 
caveats that apply to systems dynamics models, 
including the difficulty of specifying the full 
initial condition and parameter sets and the 
resulting caution required in interpreting 
specific numerical output as opposed to more 
general system behavior.

Regardless of the caveats and the difficulties 
that would face any attempt to generalize this 
diabetes model to countries around the world, 
it illustrates the potential for a deeper and, 
in a significant sense, more truly structural 
approach to health forecasting than that of the 
distal-driver models.9 Such an approach can 
conceivably serve the purpose (number 2 in our 
earlier list) of those interested in choices and 
action, rather than simply forecasting patterns 
of change (our purpose 1). Such systems 
dynamics–like approaches also have the clear 
advantage of explicitly representing morbidity 
(the stocks of disease prevalence) as a stage of 
disease progression rather than an aggregate 
correlate of mortality. 

One can begin to imagine a hybrid system 
of modules to forecast and study health, some 
of which might be relatively simple distal-
driver formulations, some of which may tap 
knowledge about specific risk factors, and 
some of which may be more deeply and richly 
structural with respect to the progression of a 
disease. Such a system could help bridge the 
gap between the desire to fully understand 
patterns of morbidity and mortality and the 
desire to move the forecasting enterprise 
toward the goals of aiding choice and action. 
The development of such a system is a theme 
that this chapter will continue to develop.

GISMO: Integrating structural and 
dynamic representations
The Global Integrated Sustainability Model 
(GISMO) of the Netherlands Environmental 
Assessment Agency (Hilderink and Lucas 
2008) is an emerging model with a number 
of the characteristics that allow bridging the 
forecasting of changes in human health with 
more detailed exploration of the determinants 
of such changes. The GISMO modeling system 
forecasts distal forces (such as GDP per capita) 
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and uses those to drive change in a number of 
risk factors that then link to specific causes of 
death. Figure 3.2 illustrates the process.

Because of the environmental focus of 
GISMO’s home institution, many of its pathways 
tend to emphasize driving variables, risk factors, 
and specific diseases related to the environment. 
Those risk factors and mortality outcomes 
are modeled using a multi-state approach, 
distinguishing proximal and distal determinants. 
Other health outcomes are modeled in GISMO 
using the GBD project’s methodology (shown as 
BoD in Figure 3.2).

Although Figure 3.2 does not show it, the 
linkages in GISMO flow not just from driving 

modules to health outcomes but also from 
health outcomes back to other modules, notably 
the demographic one. This embedding of a 
health module in a broader system begins to 
help the system also serve the third purpose of 
health modeling identified earlier, namely, the 
exploration of how the future of health may 
affect broader demographic, economic, and even 
socio-political systems.

Returning to the general purposes of 
existing forecasting approaches
The beginning of this chapter identified three 
general and interrelated purposes of health 
modeling and forecasting:

Figure 3.2 Risk factors and health outcomes in the GISMO integrated model
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Source: Hilderink, Lucas, Hoekstra, and Niessen. “The Future of Global Environmental Health: An Integrated Modelling Approach” (forthcoming); reproduced with 
permission of authors. 



Patterns of Potential Human Progress Volume 3: Improving Global Health38

n	� understanding better where patterns of 
human development appear to be taking us 
with respect to global health

n	� considering opportunities for intervention 
and achievement of alternative health futures

n	� preparing society for the broader (for 
instance, demographic, economic, and socio-
political) impacts of changing health patterns 

No model is likely to serve all of these purposes 
well, and we have seen that the forecasting 
efforts have generally been quite limited in 
their intent. The GBD project’s distal-driver 
models have opened the door for addressing 
the first purpose—mapping changing disease 
burdens. They also provide some foundation for 
thinking about decisions and actions to shape 
alternative futures because they quantify, by 
cause of death, the magnitude of current and 
(forecasted) future mortality and morbidity. 

More specialized models potentially offer 
more targeted help with the allocation of 
resources and other interventions both across 
and within death-cause categories, because 
they can distinguish different stages of disease 
with potentially variable associated costs and 
benefits of intervention. Truly meeting the 
desires of those who wish to use a model to 
make cost-benefit decisions about alternative 
health interventions almost certainly requires 
a level of detail in representation that is 
at least at that of the CDC diabetes model 
referred to earlier. Moving to that level of detail 
generally means, however, that such modeling 
sacrifices any attempt to map the complete 
disease burden, as well as any effort to look at 
aggregate social implications. 

The aggregate mortality models are perhaps 
currently best suited to helping with the third 

purpose, namely, the exploration of alternative 
mortality futures (with age-sex specificity) 
so as to help society paint, with quite a 
broad brush, the possible wide implications of 
different health futures. For example, those 
who think about financial requirements of 
pension systems regularly use such models. 
Analysis of forward linkages could potentially 
also further enrich the basis for action by 
providing information about the more indirect 
costs and benefits of alternative health futures. 
In reality, the level of aggregation in their 
treatment both of disease types and of social 
implications tends to limit analysis to large-
scale demographic impacts.

Building a hybrid, integrated system
Although no model can do everything, the 
association of different approaches with 
different contributions suggests that a 
somewhat more hybrid and integrated model 
form could help with all three forecasting 
purposes and could provide a richer overall 
picture of alternative health futures. Figure 
3.3 shows the general structure that such a 
system might take. Formulations based on 
distal drivers could remain at its core. Again, 
such a core structure is especially useful in 
accomplishing the first purpose, because the 
distal-driver formulations of the GBD offer an 
existing treatment of health outcomes that is 
comprehensive with respect to diseases and 
their related mortality and morbidity.

There is no inherent reason, however, 
that income, education, and time should be 
equally capable of helping us forecast disease 
in each of the major categories (let alone 
each of the specific diseases) that the GBD 
models examine. For example, distal-driver 
formulations tend to produce forecasts of 
constantly decreasing death rates. Yet we know 
that smoking, obesity, road traffic accidents, 
and their related toll on health tend to 
increase in developing societies among those 
who first obtain higher levels of income and 
education, and that only with further societal 
spread of income and education do smoking 
and road traffic deaths (and perhaps also 
obesity) typically decline.10 

Richer structural models might help us 
capture such more complex patterns. Many 
death cause-specific distal formulations would 

 Different 
forecasting 

approaches serve 
different purposes, 
and hybrid models 
have the greatest 

potential to 
address multiple 

purposes. 

Figure 3.3 Envisioning a hybrid and integrated health forecasting approach 
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 Richer structural 
models might help 

us capture the 
complex patterns 
between health 
drivers, health 
outcomes, and 

forward linkages 
from health. 

 We are building 
and using a 

hybrid model that 
combines distal 

formulations, 
treatment of risk, 

extended structures, 
and integration with 

broader human 
development. 

 The IFs health 
model has at its 
core the distal-
driver outcome 

formulations 
developed by the 

GBD project. 

benefit from modifications and, in some cases, 
replacement. Deeper and richer structural 
formulations, like those for specific diseases 
such as HIV/AIDS or diabetes, are examples. 
So too, our exploration toward mid-century 
and beyond of forecasts of deaths from road 
traffic accidents generated by the distal-driver 
formulation of the GBD project suggested that 
a variety of floor and ceiling effects need 
consideration in the longer term, and that a 
more richly structural formulation could limit 
perverse forecasting behavior. (We should, of 
course, not expect GBD distal formulations 
that were built for forecasting 25–30 years to 
be fully capable of use over time-horizons of 
50 years or more.) 

A hybrid model of the form we wish to see 
also should contribute to the second purpose 
of health forecasting, as more specialized 
structural representations may help us 
identify opportunities for interventions to 
improve health futures. These interventions 
might occur either in the form of super-distal 
drivers (for example, policy-driven human 
action with respect to health systems) or the 
amelioration of proximate risk factors through 
changes in the behavior of individuals, or in 
the combination of super-distal drivers and 
proximate risk factors. As an example, the 
socio-political and environmental modules in 
IFs act, in part, as super-distal foundations for 
variables such as undernutrition and indoor 
air pollution, which in turn facilitate analyses 
of proximate risk factors and human action 
around them. 

Finally, with respect to the third purpose 
(the connections of health with other human 
systems), representation of these connections 
would allow health outcomes to feed back 
to broader human development systems, 
closing the loop. Many linkages of all of these 
broader system elements with health should be 
bi-directional.

Modeling Health in IFs
The IFs health model system is a modularly 
hybrid and integrated system of the kind that 
Figure 3.3 sketches. Like any model, it has many 
limitations; it is an evolving and improving 
system. In the remainder of this chapter we 
describe its current form, and in Chapter 4 we 
will explore the behavior of the system in and 

of itself and in comparison with the health 
forecasts of others.

The IFs health model forecasts 15 individual 
and clustered causes of death and disability. We 
list them below, grouped by the GBD major cause 
categories:

Group I—diarrheal diseases; HIV/
AIDS; malaria; respiratory infections; 
other communicable diseases

Group II—cardiovascular diseases; 
diabetes; digestive disorders; 
malignant neoplasms; mental health; 
respiratory conditions and diseases; 
other noncommunicable diseases

Group III—intentional injuries; road 
traffic accidents; other unintentional 
injuries

The GBD (mostly distal driver) model 
foundation in IFs
The IFs model begins with the driver outcome 
formulations developed by the GBD project for 
its analyses.11 Mathers and Loncar (2006) built 
a general distal-driver formulation and applied 
it to selected major disease clusters (elaborating 
their forecasting to many other diseases with 
regressions linked to the major clusters). 
We applied their major-cause formulation to 
largely the same major clusters and elaborated 
a small subset of additional detailed cause-of-
death categories (namely, malaria, respiratory 
infections, and mental health) in accordance 
with our needs for this volume (discussed 
below).12 The core Mathers and Loncar 
formulation that we implemented is:

1n(Ma,k,i,r) = Ca,k,i + ß1 * 1n(Yr) + ß2 * 1n(HCr) + 
ß3 * (1n(Yr))

2 + ß4 * T + ß5 * 1n(SIa,k,r)

where 
M is mortality level in deaths per 100,000 for a 
given age group a, sex k, cause i, and country 
or region r; C is a constant; Y is GDP per 
capita at PPP; HC is total years of completed 
education for adults 25 and older; T is time 
(year = 1900); and SI is smoking impact.

Some important differences in our approach 
relative to that of the GBD required 
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development of algorithms for computation 
of initial conditions and small multiplicative 
adjustments to formulations. Specifically, we 
begin forecasts in the base year of 2005, we 
maintain five-year age categories up through 
100+, and we represent infants as a separate 
category. In contrast, the initial data we 
obtained from the GBD project provided 
country, sex, and cause-specific mortality, but 
from the year 2004 and in more aggregated 
categories at the youngest and oldest ages.13 
Moreover, we have our own sources of data for 
GDP per capita and education attainment level, 
which we forecast using our own models. 

To reconcile our approach with data used by 
the GBD project and with GBD formulations we:

n	� computed a set of initial scaling parameters 
(by country, sex, and cause of death) that 
assure consistency of total deaths forecast 
using the GBD formulations and our 2005 
values of driving variables with the cause-
specific mortality data in the GBD’s detailed 
death file;14

n	� calculated a second set of scaling or 
normalization parameters (by country, sex, 
and age category) that force the sum of all 
deaths to be the same as the UNPD mortality 
data for each five-year age and sex category 
for the year 2005. This process also spreads 
the more highly aggregated 2004 mortality 
data of the GBD project15 into five-year age 
categories.16 This process assures that we 
have initial conditions consistent with UNPD 
mortality data in our base year.17

These adjustments mean that, except for total 
mortality by age and sex from the UNPD, our 
numbers in the 2005 base year will not match 
other data precisely, but that the overall pattern 
of deaths by cause should be quite close to the 
GBD data.18 In the forecasts themselves, we keep 
the multiplicative scaling and normalization 
parameters constant over time because there is 
no clear reason for changing them. 

Lumped within the major cause categories 
forecast with the formulation above are certain 
diseases we wish to deal with explicitly. 
These include three diseases in the category 
“communicable diseases other than HIV/AIDS”—
diarrheal diseases, malaria, and respiratory 
infections—and two diseases under “other 

noncommunicable diseases”—chronic respiratory 
conditions (discussed later in conjunction with 
proximate-driver and relative-risk analysis) and 
mental health (for which we represent constant 
death rates). For the first three, the GBD project 
(Mathers and Loncar 2005 and 2006) provides a 
distal-driver formulation for detailed causes of 
mortality that we also use.

The regression equations for the detailed 
causes take the form:

1n(Ma,k,i,d,r) = Ca,k,i,d,r + ßa,k,i,d,r * 1n (Ma,k,i,r)

where 
M is mortality rate in deaths per 100,000 
for age group a, sex k, general cause i, and 
country or region r; calculated using the 
Mathers and Loncar formulation for the major 
cause category; d is the specific disease.

For the base year, the death rates for the 
specific diseases are calculated using the 
above equation.19 For future years, given the 
form of the equation, a 1 percent change in 
the mortality rate for the general cause-group 
is associated with a ß percent change in the 
mortality rate for the detailed cause.20 As 
an example, the ß for diarrheal diseases for 
males in the 0–4 age group is 1.493 (Mathers 
and Loncar 2005: 115). Thus, a 1 percent 
decline in the mortality rate for communicable 
diseases other than HIV/AIDS for males in the 
0–4 age group in a specific country implies a 
1.493 percent decline in the mortality rate for 
diarrheal diseases for the same group.

In an early phase of model development, we 
replicated the basic GBD distal-driver models 
(with the above selected breakouts of detailed 
causes) and then analyzed forecasts made with 
our drivers from the integrated IFs system, 
both in order to compare our results with those 
of the GBD and also to explore the behavior of 
the formulations beyond the time-horizon for 
which they were initially estimated and used. 
Although our primary focus is 2060 (a 50-year 
horizon), we pushed the horizon to 2100 in 
order to understand better the behavior of 
the equations. The extensions, modifications, 
and replacements of distal-driver-only 
functions that we made and describe below 
resulted from our desire to improve long-term 
forecasting capability. 

 We modified or 
replaced some 

GBD distal-driver 
functions to 

improve forecasting 
capability over our 

longer forecast 
horizon. 
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 Our 
representations of 
smoking impact, 

HIV/AIDS, road 
traffic accidents, 

and health spending 
differ from or 

augment those of 
the GBD. 

Specialized structural model formulations 
and approaches in IFs
The distal-driver formulation serves well 
for many disease and death categories. The 
approach serves less well in other cases, 
particularly those in which mortality rates tend 
not to monotonically increase or decrease, often 
because a complex and perhaps sequential set of 
factors drive morbidity and mortality patterns. 
In such cases, still richer structural models 
can be helpful. One example is smoking, where 
the GBD approach uses an alternative smoking 
impact series, but a forecast of smoking rates 
itself as a driver of impact could be very useful. 
Another example, which drove the GBD project 
itself to look for an alternative approach, is 
HIV/AIDS. We needed either to do as the GBD 
did and rely on the forecasts of others (such 
as UNAIDS) or to develop our own approach, 
which might ultimately allow us to build more 
scenario “handles” into our own analysis; we 
chose the latter course. A third example is 
road traffic accident deaths, where our work 
with the formulation of the GBD suggested 
inadequate ceiling effects (upper limits beyond 
which a forecast should not reasonably go) and 
long-term forecasts of deaths that appeared 
unrealistic. A fourth example is health spending 
as it relates to communicable disease deaths 
of children. Although subject to significant 
debate, as Chapter 2 discussed, there is much 
reason to represent the possibility that health 
expenditures augment the distal drivers in 
affecting at least some health outcomes.

Smoking, smoking impact, and chronic diseases
In 1992 Peto et al. proposed a method for 
calculating the proportion of deaths caused by 
smoking that was not dependent on statistics 
on prevalence of tobacco consumption. This 
method involved developing an indicator for 
accumulated smoking risk, termed the smoking 
impact ratio (SIR). Ezzati and Lopez (2004: 
888) defined the SIR as “population lung 
cancer mortality in excess of never-smokers, 
relative to excess lung cancer mortality for a 
known reference group of smokers.” In other 
words, the ratio is derived by comparing actual 
population lung cancer mortality with the 
expected lung cancer mortality in a reference 
population of nonsmokers. Because the SIR 
is derived from age-sex lung cancer mortality 

it can also provide an indication of the 
“maturity” of the smoking epidemic (the extent 
to which the population had been exposed to 
tobacco in the past) (Ezzati and Lopez 2004: 
888). Once the SIR has been determined, one 
can then use it to estimate the proportions 
of deaths from other diseases attributable to 
smoking (Peto et al. 1992). 

For the GBD project, Mathers and Loncar 
developed country-level smoking impact (SI) 
projections to 2030 (Mathers and Loncar 
2006; and Mathers and Loncar, Protocol S1 
Technical Appendix, n.d.) and used them as 
part of their distal-driver formulation. The SI 
projections rely on expert judgment, and it 
was not possible for the IFs project to improve 
on them; thus, we used those projections 
without change. Forecasting beyond 2030 
required, however, that the IFs project extend 
those series, taking into account a long lag 
between smoking rates and smoking impact. 
We therefore wanted smoking rates themselves 
to drive our approach. The development of 
a structural forecast system for those rates 
involved several main steps. First, we created 
a historical series of estimated smoking 
rates. This was necessary because historical 
smoking rate data are exceptionally sparse, 
and we needed to understand the patterns 
and trajectory of smoking behavior over time. 
We built the historical imputed smoking series 
on the most recent smoking rate data point of 
each country and the smoking impact forecasts 
of the GBD. Assuming a direct 25-year lag 
between smoking rate and smoking impact,21 
we used year-to-year percentage changes in the 
smoking impact series to change smoking rates 
before and after our smoking data point.22 
In spite of the simplicity of this approach, 
and the fact that smoking impact reflects 
more than smoking rates,23 we found that the 
constructed series tended to match relatively 
well when more than one historical point for 
smoking rate existed.

Second, we constructed cross-sectional 
relationships that suggest expected rates of 
smoking based on GDP per capita at PPP for 
males and females separately:

ExpSmoking_RateMales = 0.00224 * GDPPCP2 – 
0.3386 * GDPPCP + 38.3996
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ExpSmoking_RateFemales = –0.00573 * GDPPCP2 
+ 0.6893 * GDPPCP + 5.6634

Third, we initialized a moving average rate of 
change in smoking rate with the compound 
rate of change between 1995 and 2005. We 
advanced that moving average over time by 
slowly changing the moving average toward 
the expected values of the cross-sectional 
formulations (weighting the expected value 
1/10 of the moving average value each 
year). We introduced a number of other 
algorithmic rules to produce what appeared 
to be reasonable forecasts of smoking rates 
given the general notion of a bell-shaped 
curve (or rise and then fall) of smoking with 
income and time. These included bounding the 
expected value formulations at $30,000 for 
females and $50,000 for males so as to avoid 
complete collapse of smoking rates at high 
income levels. 

Finally, for forecasting we used the same 
process in reverse that we had earlier used to 
estimate the smoking series. With the year-to-year 
percentage change in smoking rate forecasts from 
2005 forward, we changed the year-to-year values 
of the smoking impact series 25 years later. 

HIV/AIDS
The ultimate objective of the calculations 
around HIV infections and AIDS is to forecast 
annual deaths from AIDS by age category and 
sex. We began, however, by forecasting country-
specific values for the HIV prevalence rate 
(HIVRATE).24 For the period from 1990–2007 we 
have reasonably good data and estimates from 
UNAIDS (2008) on prevalence rates and have 
used values from 2004 and 2006 to calculate an 
initial rate of increase (hivincr) in the prevalence 
rate across the population (which for most 
countries is now negative).25

There will be an ultimate peak to the 
epidemic in all countries, so we need to deal 
with multiple phases of changing prevalence: 
continued rise where rates are still growing 
steadily, slowing rise as rates peak, decline 
(accelerating) as rates pass the peak, and 
slowing rates of decline as prevalence 
approaches zero in the longer term. In 
general, we need to represent something of 
a bell-shaped pattern, but one with a long 
tail because prevalence will persist for the 

increasingly long lifetimes of those infected 
and if pockets of transmission linger in selected 
population subgroups.26 As a first level of 
user-control over the pattern, we add scenario 
specification via an exogenous multiplier on 
the prevalence rate (hivm). 

The movement up to the peak involves 
annual compounding of the initial growth rate 
in prevalence (hivincr), dampened as a country 
approaches the peak year. Thus, we can further 
control the growth pattern via specification of 
peak years (hivpeakyr) and prevalence rate in 
those peak years (hivpeakr), with an algorithmic 
logic that gradually dampens growth rate to the 
peak year:27

HIVRATEr
t = HIVRATEr

t – 1 * (1 + hivincrr
t ) * hivmr

where
hivincrr

t = F (hivincrr
t = 1, hivpeakyrr

  , hivpeakrr
 );

t is time (shown in this chapter only when 
equations reference earlier time points); 
and r is country (geographic region in IFs 
terminology).  Here and elsewhere, names in 
bold are exogenously specified parameters.

As countries pass the peak, we posit that 
advances are being made against the 
epidemic, both in terms of social policy 
and technologies of control, at a speed 
that reduces the total prevalence rate by a 
certain percentage annually (hivtadvr). To 
do this, we apply to the prevalence rate an 
accumulation of the advances (or lack of 
them) in a technology/social control factor 
(HIVTECCNTL). In addition, if decline is 
already underway in the data for recent years, 
we add a term based on the initial rate of 
that decline (hivincr), in order to match the 
historical pattern; that initial rate of decline 
decays over time and shifts the dominance of 
the decline rate to the exogenously specified 
rate (hivtadvr). This algorithmic formulation 
generates the slowly accelerating decline and 
then slowing decline of a reverse S-shaped 
pattern with a long tail: 

HIVRATEr
t = HIVRATEr

t – 1 * (1 – HIVTECCNTLr
t) 

where
HIVTECCNTLr

t = HIVTDCCNTLr
t–1 * (1 + 

hivtadvr * t/100) + F(hivincrr
t=1) 
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Finally, calculation of country- and region-
specific numbers for HIV prevalence is simply a 
matter of applying the rates to the size of the 
population (POP) number.

HIVCASESr
t = POPr

t * HIVRATEr
t

The rate of death of those with HIV would 
benefit from a complex model in itself, 
because it varies with the medical technology 
available, such as antiretroviral therapy 
(ART) and the age structure of prevalence. 
We have simplified such complexities because 
of data constraints, while maintaining basic 
representation of the various elements. 
Because both the manifestation of AIDS and 
deaths from it lag considerably behind the 
incidence of HIV, we link the death rate of 
AIDS (HIVAIDSR) to a 10-year moving average 
of the HIV prevalence (HIVRateMAvg). We also 
posit an exogenously specified technological 
advance factor (aidsdrtadvr) that gradually 
reduces the death rate of infected individuals 
(or inversely increases their life span), as ART 
is doing. And we allow the user to apply an 
exogenous multiplier (aidsratem) for further 
scenario analysis:

AIDSDRATEr
t = HIVRateMAvgr

t * HIVAIDSRr
t = 1 

* (1 – aidsdrtadvrr
t  / 100) * aidsratemr

t 

where
HIVRateMAvgr

t = F(HIVRATEr
t, last 10 years) 

We spread this death rate across sex and age 
categories. We apply a user-changeable table 
function to determine the male portion as a 
function of GDP per capita at PPP, estimating 
that the male portion rises to 0.9 with higher 
GDP per capita.28 To specify the age structure of 
deaths, we examined data from large numbers 
of studies on infections by cohort in Brazil and 
Botswana (in a U.S. Census Bureau database) 
and extracted a rough cohort pattern from 
those data. 

Road traffic accident deaths
Deciding that the distal-driver formulation alone 
was producing unrealistic estimates of deaths 
from road traffic accidents in the long-term, 
we replaced the distal formulation with a more 
deeply structural one tied to the growth of the 

vehicle fleet (occurring pretty much around the 
world with income growth but saturating at 
higher income levels) and the declining rate of 
accidents and deaths per vehicle (which occurs 
also at higher income levels). Thus, the overall 
forecast pattern is one of rather rapid growth in 
road traffic death rates when the vehicle fleet 
is growing most rapidly, followed by slowing 
growth of road traffic death rates and ultimately 
by their decline.

We based our forecast of vehicles per capita 
(VEHICLFLPC) on the formula of Dargay, Gately, 
and Sommer (2007):

VEHICLFLPC = (852 – RF) * e(–5.987 * e(–0.2 * GDPPCP(R))) 

where
GDPPCP is GDP per capita at PPP (thousand 
dollars) and RF is an adjustment factor 
(changing over time) to compensate for 
different land densities, taking the United 
States as the base. We computed the 
adjustment factor using the formula from 
Dargay, Gately, and Sommer:

RF = 38.8 * 
POP(R)

LANDAREA(R) 
POP(USA)

LANDAREA(USA) –

where
RF is the adjustment factor, POP is the 
population (millions) of country R, and 
LANDAREA is the total land area (10,000 
square kilometers) of country R. We 
computed the adjustment factor only when 
country R had higher density than the 
United States.29

Deaths per vehicle tend to fall with income. 
R. J. Smeed originally proposed a quite widely 
accepted relationship, now labeled Smeed’s 
Law,30 which in his notation and without units 
relates deaths to vehicle ownership:

D = 0.0003(np2)
1–3

where
D is annual road deaths, n is number of 
vehicles (which we compute from vehicles 
per capita above), and p is population. We 
spread deaths across age categories using 
information from the GBD project’s detailed 
death tables.
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Public spending on health 
The GBD project’s distal-driver formulation 
does not take public spending on health into 
account. However, we add a term to the basic 
GBD distal-driver formulation to incorporate 
the relatively consistent inverse relationship of 
public spending on health with child mortality 
rates in poor countries (Anand and Ravallion 
1993; Bidani and Ravallion 1997; Nixon and 
Ulmann 2006; Wagstaff 2002). For countries 
having a GDP per capita (at PPP) of $15,000 or 
less, our model applies a simple elasticity for 
the effects of government health expenditure 
as a percentage of GDP on all-cause mortality 
for the 0–4 age group from the distal-driver 
formulation (the base calculation that health 
expenditures adjust): 

1n(5q0
adj) = 1n(5q0

base) – 0.06 * HealthExp%

where

5q0 is the mortality rate for age 0–4. 

In IFs this formalized version becomes

MortAdjtj = 0–4,r,k = 1 = Morttj = 0–4,r,k = 1 * (1 + 
HlExpFctt

r) 

where
HlExpFctt

r = elhlmortspn * (100 * GDSt
r, g = health /

GDPt
r) – GDSHIt

r 
= 1)

where
GDSHIt

r 
= 1 = GDSt

r 
=1

,    g = health / GDPt
r 

= 1 * 100 
elhlmortspn = –0.06
GDS is government expenditure; GDSHI is 
initial government expenditure; HlExpFct is 
health expenditure factor; elhlmortspn is the 
elasticity of mortality with health spending; 
j is age category; r is country/region; k is 
cause (1 is communicable); t is time-step

In this calculation we use health expenditure 
as a percentage of GDP, rather than health 
expenditure per capita, to avoid any 
confounding with the distal driver for GDP 
per capita. We established this coefficient 
for all-cause mortality in the 0–4 age category 
on the basis of multivariate regressions using 
the GBD distal-driver specifications as a base 
model and compared the coefficient with 
the results of existing studies (Anand and 

Ravallion 1993; Filmer and Pritchett 1999; 
Wagstaff 2002).31 

Model extensions to include proximate 
drivers in IFs
As we have noted previously, the distal drivers 
do not, in and of themselves, cause health 
outcomes. Rather, they influence mortality 
and morbidity through their effects on a host 
of proximate risk factors. If these factors move 
in parallel with the distal drivers—that is, 
if changes in the distal drivers fully capture 
the risk factors and the efficacy of the health 
systems—then it would be reasonable to forecast 
solely on the basis of the distal drivers. To the 
extent that this is not the case, however, dealing 
with risk factors more explicitly may improve 
forecasts. Moreover, the proximate drivers provide 
some analytical leverage with respect to ways in 
which we might improve future health outcomes, 
the second forecasting purpose identified earlier. 
In summary, forecasting based on proximate 
drivers and risk factors brings us closer to the 
level of targeted human interventions.

In this section, we describe a method 
for modifying forecasts based solely on the 
distal drivers (and our specialized structural 
extensions to them) by addressing a number of 
the risk factors identified in WHO’s CRA project 
discussed earlier (Ezzati et al. 2004a). We have 
not addressed all risk factors, or all health 
outcomes related to the selected risk factors, 
because of limitations of data, knowledge, and 
time. Still, the procedure we describe does allow 
us to deal with some of the more important risk 
factors and provides a foundation on which we 
and others can build further.

The basic proximate-driver approach in IFs 
We build our approach on an understanding 
of two basic concepts used in the CRA project, 
specifically relative risk (RR) and population 
attributable fraction (PAF). 

A relative risk is a “measure of the risk of a 
certain event happening in one group compared 
to the risk of the same event happening in 
another group.”32 We follow the approach 
taken by the CRA study, comparing our forecast 
population at risk to an “ideal” population with a 
“theoretical minimum” level of risk. For example, 
WHO estimates that children under five who are 
moderately or severely underweight are almost 
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nine times more likely to die from communicable 
causes than is a population of “normal-weight” 
children (Blössner and de Onis 2005).

As its name suggests, a PAF reflects the 
degree to which a specific risk factor is 
associated with the occurrence of a specific 
health outcome. Formally, it is the proportional 
reduction in disease or death rates for the 
total population (including those with and 
without the risk factor) that we would expect 
if we reduced a particular risk factor to a 
theoretically minimum level (Murray et al. 
2004). The further the current situation is 
from the ideal, the closer the value of the 
PAF will be to 1.

A PAF is calculated as:

(∑RR(x)P(x)-∑RR(x)P’(x) / ∑RR(x)P(x)) = 1 – 
∑RR(x)P’(x) / ∑RR(x)P(x)

where
RR(x) is relative risk at exposure level x; 
P(x) is the population distribution in terms 
of exposure level, that is, the shares of the 
population exposed to each level of exposure; 
P’(x) is the theoretical minimum population 
distribution in terms of exposure level. For 
certain risks this is defined as no exposure; 
where this is not realistic, WHO defines an 
international reference population

Following this definition, multiplying the 
mortality from a particular disease by the PAF 
yields an estimate of the number of people who 
would not have died had the risk factor been 
at its theoretical minimum level. If we assume 
that the values of RR(x) and P’(x) for particular 
risk factors and diseases do not differ across 
countries or change over time,33 then changes 
in the PAF are solely a function of changes in 
P(x), the exposure of the population to the 
particular risk factor. Thus, it is necessary to 
be able to forecast the future levels of the risk 
factors. Later sections of this chapter describe 
how this is done for specific risk factors. 

Since our forecast of health outcomes 
from distal drivers implicitly suggests certain 
proximate-driver levels, we are really interested 
in the effect of a difference in (1) estimates 
of the future levels of a risk factor based only 
on distal drivers, and (2) estimates based 
on a more complete set of drivers. Again, 

assuming this is possible, we can calculate 
two versions of the PAF, namely, PAFFull and 
PAFDistal. Defining MortalityDistal as the mortality 
calculated using only the distal drivers and 
MortalityFinal as the mortality after accounting 
explicitly for the risk factor, we can state that:

n	� MortalityDistal * PAFDistal represents the 
number of people who would not have died 
had the risk factor been at its theoretical 
minimum level using the distal formulations 
for mortality and the proximate risk factor; 
and

n	� MortalityFinal * PAFFull represents the number 
of people who would not have died had the 
risk factor been at its theoretical minimum 
level using a more complete formulation for 
mortality and the proximate risk factor.

If we assume that no other factors influence the 
difference in total mortality between the distal 
formulation and that using the full model, then:

MortalityFinal – MortalityDistal = MortalityFinal * 
PAFFull – MortalityDistal * PAFDistal

Yields:
MortalityFinal = MortalityDistal * ((1-PAFDistal) / 

(1 – PAFFull)) = MortalityDistal * ∑RR(x)PFull(x) 
/ ∑RR(x)PDistal(x)

The adjustment factor is the ratio of the 
weighted average relative risks based on the 
distributions using the distal-only versus the 
full formulations for estimating the value of 
the risk factor. A higher weighted average RR 
based on the full formulation implies that the 
distal drivers overestimate the improvement 
(or underestimate the deterioration) in the 
risk factor. Thus, the mortality forecast needs 
to be adjusted upward. Alternatively, if the 
weighted average RR is lower based on the full 
formulation than on the distal formulation, the 
mortality forecast will be adjusted downward. 
Note that this property of the calculation 
actually obviates the need to know the 
theoretical minimum population.

Mapping proximate drivers to diseases and 
age categories
We used this approach to modifying distal-driver 
forecasts by forecasts of proximate risks for 
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eight proximate risk factors (refer back to Table 
2.1 for the broader list of factors included in 
the WHO CRA project and to Chapters 5 and 6 
for the eight IFs analyses). Table 3.1 shows the 
particular diseases and age groupings that each 
of the risk factors in IFs affects.

An example of the proximate-driver approach 
in IFs: Undernutrition
We elaborate here the process for specification 
of the adjustment factor linking a proximate 
driver (in this case, undernutrition as 
measured by underweight) and disease (in this 
case, all communicable diseases other than HIV/
AIDS) for children under five. For elaboration 
of our approach to the other proximate 
drivers included in this volume, please see the 
specific sections in Chapters 5 and 6 and the 
technical documentation of the health model at 
www.ifs.du.edu. 

Fishman et al. (2004) discuss the many 
risks of death and disease that undernutrition, 
in the form of being underweight, poses to 
children under the age of five and to women 
of reproductive age. They point, in particular, 
to the potential consequences for children 

under the age of five from communicable 
diseases other than HIV/AIDS, one of the 
general cause-groups included in the GBD 
project. They break this category down into 
diarrhea, pneumonia (respiratory infections), 
malaria, measles, and a combined group of 
these and all other communicable diseases 
except HIV/AIDS, providing specific relative 
risks for each of the four specific disease 
groups, as well as for the combined group. As 
noted earlier, we also separate out diarrhea, 
respiratory infections, and malaria but define 
our fourth group to include measles as well 
as other communicable diseases except HIV/
AIDS. Thus, we are able to estimate mortality 
rates, MortalityDistal, for each of three separate 
and one combined cause-groups, as described 
earlier in this chapter.34

Fishman et al. (2004) specified the risk 
factor for undernutrition in terms of weight-
for-age using an “average” population, with 
a given mean and standard deviation. For 
any particular country, children under five 
years of age are assigned to one of four 
categories: severely underweight (more than 
three standard deviations [SDs] below the 
mean weight for the “average” population), 
moderately underweight (3SDs to 2SDs below 
the mean weight for the “average” population), 
mildly underweight (2SDs to 1SD below the 
mean weight for the “average” population), 
and normal weight (no more than 1SD below 
the mean weight for the “average” population). 
This constitutes the population distribution 
in terms of exposure level, specified as 
P(x) in earlier discussion of the proximate-
driver approach in IFs. Fishman et al. (2004) 
also described the theoretical minimum 
distribution, P’(x). Using their all-cause 
category as an example (Fishman et al. 2004: 
64), children who are severely underweight are 
8.72 times as likely to die from communicable 
diseases as those with a normal weight; those 
who are moderately underweight are 4.24 times 
as likely to die; and those who are mildly 
underweight are 2.06 times as likely to die.

In order to calculate the adjustment factor 
for the effect of undernutrition on children’s 
mortality from communicable diseases, we 
need to know the population distributions 
(P) of undernutrition based on both the 
distal drivers, PDistal(x), and the full model, 
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Table 3.1 Risk factors and their disease impacts in IFs

Risk factor Diseases impacted in IFs
Age group 
impacted in IFs

Childhood underweight Diarrheal diseases 
Respiratory infections 
Malaria 
Other communicable diseases

<57

Body mass index Cardiovascular diseases 
Diabetes

30+

Smoking Malignant neoplasms 
Cardiovascular diseases 
Respiratory diseases

30+

Unsafe water, sanitation, and hygiene Diarrheal diseases All ages

Urban air pollution Respiratory infections 
Respiratory diseases 
Cardiovascular diseases

30+

Indoor air pollution from household 
use of solid fuels

Respiratory infections 
Respiratory diseases

<5 (infections)
30+ (diseases)

Global climate change Diarrheal diseases 
Respiratory infections 
Malaria 
Other communicable diseases

<5

Vehicle ownership and fatality rates Road traffic accidents All ages

Note: In IFs, global climate change affects the listed diseases for children under five years of age through its 
impact on childhood underweight.

Source: IFs project.
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PFull(x). Using historical data, we developed 
formulations for calculating both of these. 
The latter draws on IFs representation of the 
food system. Most directly, it is a function of 
available calories per capita within a country, 
which reflects dynamics around income levels 
and food prices that, in turn, respond to land 
resources and use, crop yields, fish catch and 
aquaculture, energy prices, and more.35

The population distributions and relative 
risks provide all the information necessary to 
calculate the adjustment factor and the adjusted 
mortality, MortalityFull, using the equation 
specified earlier in the section titled “The basic 
proximate-driver approach in IFs.” Since we deal 
only with a single risk factor in this case, the 
formulation requires nothing further.

Dealing with multiple risk factors
Sometimes more than one risk factor will 
be linked to a particular disease. In theory, 
this requires estimating joint relative risks 
and exposure distributions. Under certain 
circumstances, however, a simple method can be 
used to calculate a combined PAF that involves 
multiple risk factors (Ezzati et al. 2004a):

PAFcombined = 1 – ∏(1-PAFi)

where
PAFi is the PAF for risk factor i

The logic here is as follows: 1-PAFi represents 
the proportion of the disease that is not 
attributable to risk factor i. Multiplying these 
1-PAFi terms yields the share of the disease that 
is not attributable to any of the risk factors, and 
subtracting this product from 1 leaves the share 
of the disease that is attributable to the set of 
risk factors considered.

Say that we have two risk factors:36

PAFcombined = 1 – (1-PAF1)(1-PAF 2)

Following from the discussion above, 
the combined adjustment factor can be 
calculated as:

((1-PAFcombined
Distal) / (1-PAFcombined

Full)) = 
[(1-PAF1

Distal)(1-PAF 2Distal)] / [(1-PAF1
Full)

(1-PAF 2Full)] 

= [(1-PAF1
Distal) / (1-PAF1

Full)] * [(1-PAF 2
Distal) /

(1-PAF 2
Full)]

= [∑RR1(x)P1
Full(x) / ∑RR1(x)P1

Distal(x)] * 
[∑RR2(x)P2

Full(x) / ∑RR2(x)P2
Distal(x)]

In other words, the combined adjustment factor 
is a simple multiplication of the individual 
adjustment factors.

Other proximate-driver modifications of distal 
formulations
In limited cases, GBD researchers decided 
that model behavior necessitated proximate-
driver modifications to the distal-driver 
approach. For example, while distal 
relationships suggest falling rates of 
noncommunicable disease over time, the 
popular assumption that BMI levels will 
continue to increase over the next decade(s) 
indicates that diabetes mortality might 
actually rise in the near to mid-future.37 
Similarly, in the GBD 2002 update, Mathers 
and Loncar (2006) introduced an adjustment 
factor related to smoking to re-estimate 
chronic respiratory–related mortality (a 
subset of other noncommunicable disease), 
citing concerns that distal-driver projections 
alone did not adequately reflect assumptions 
of decreasing smoking rates in high-income 
countries (Mathers and Loncar, Protocol S1 
Technical Appendix, n.d.: 6). We generally 
followed the GBD approach to these two 
disease categories, with slight modifications 
for endogenizing our BMI forecasts into 
diabetes as described below.

Diabetes. For a population at a 
“theoretical minimum” level of BMI (mean 
21 and one standard deviation), we assume 
that diabetes-related mortality will decrease 
over time at 75 percent of the rate of other 
noncommunicable disease–related mortality, 
following the logic employed by the GBD 
researchers (see again Mathers and Loncar, 
Protocol S1 Technical Appendix, n.d: 5). 
For a population with levels of BMI above 
the theoretical minimum, however, we 
compute a country-, age-, and sex-specific 
shift factor (labeled “diabetes relative 
risk” in the IFs model) that modifies this 
expected decrease in other noncommunicable 
disease–related mortality rates in order to 
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determine the expected diabetes-related 
mortality rate. 

For each unit of BMI increase, the relative 
risk of diabetes-related mortality (compared 
to a theoretical minimum population) ranges 
from approximately 1.4 for females and 1.2 for 
males, depending on age group.38 Since we do 
not forecast age-specific BMIs in IFs (due largely 
to a lack of historical data), we initialize our 
diabetes shift factor to match those provided by 
the GBD project. However, in forecasts after 2005 
we use our assumptions around future BMI to 
drive projections. 

Respiratory diseases. The two subsets 
of chronic respiratory conditions—chronic 
obstructive pulmonary disease (COPD) and 
other chronic respiratory conditions—
are computed separately from other 
noncommunicable diseases, and both follow the 
same formulation:

Mort = LN(SIR*RR + 1-SIR) *(Exp(ONCD_
Mort)0.75)

SIR is a “smoking impact ratio,” calculated 
as smoking impact divided by an adjustment 
factor that is specific to age, gender, and 
to some regional differentiation.39 Relative 
risks (RR in the above equation) are also 
specific to gender, age, and type (COPD or 
other respiratory disease) and were provided 
by the GBD authors. ONCD_Mort is other 
noncommunicable disease mortality.

Disability and DALYs
To represent morbidity, we followed the path 
of Mathers and Loncar (2005 and 2006) and 
linked change in years of living with disability 
over-time to change in years of life lost over-
time. In general, the GBD approach posits that 
disability declines at a rate that is some fraction 
of decline in mortality rates (from 0 or no decline 
in disability to 100 percent, or fully comparable 
decline). As Mathers and Loncar explained:

YLD projections were generally 
derived from the YLL projections by 
applying the ratio of YLD to YLL for 
2002. For ischaemic heart disease and 
stroke, future incidence rates were 
assumed to decline at 50% of their 
mortality rate declines reflecting 

declining case fatality rates as well 
as incidence rates. For causes where 
there is little or no mortality, age-
sex-specific YLD rates per capita were 
generally assumed to remain constant 
into the future. For certain mental 
disorders, musculoskeletal conditions, 
and hearing loss, disability weights 
were assumed to decline somewhat 
with improvements in income 
per capita reflecting increasing 
treatment coverage. YLD rates for 
nonfatal communicable diseases and 
nutritional deficiencies were assumed 
to decline at between 50% and 100% 
of the mortality rate declines for 
Group I causes. (2006: 2016)

Table 3.2 shows the relative rates of decline that 
the IFs project adapted from the GBD discussion. 
In all cases, the rate of decline in morbidity rate 
is posited to be equal to or less than the decline 
in mortality rate, frequently only half as much. 
One of the strong implications of the approach 
and of the coefficients that are less than 100 
percent is that the forecasts will generate an 
ongoing shift of total disease burden from 
mortality to disability. 

In contrast to this expeditiously simple 
approach to forecasting disability in IFs, 
existing evidence provides a complicated 
picture of the relationship between declining 
mortality and morbidity. For chronic diseases 
such as cardiovascular diseases, reductions in 
cause-specific mortality result from treatment 
as well as from prevention, meaning that 
decreased mortality should be associated 
with relatively less decline in the incidence 
of the disease (Mathers and Loncar, Protocol 
S1 Technical Appendix, n.d.). As a greater 
proportion of incident cases survive and 
continue to be affected by the disease, 
prevalence rates should rise, an expectation 
confirmed by empirical data (CDC and The 
Merck Company Foundation 2007; Robine and 
Michel 2004). In other words, the decline in 
incidence or prevalence of a disease associated 
with a mortality decline should be determined 
by the relative prominence of prevention 
(reducing both incidence and prevalence) 
versus treatment (which should not affect 
incidence and should increase prevalence). 
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Moreover, the basic logic of the current 
approach in IFs does not address changes in 
disease severity as mortality declines. While 
the survival of those who would otherwise 
have been most likely to die might increase the 
average severity of disease among surviving 
cases, it is also quite possible that the very 
treatments that reduce mortality would also 
reduce disease severity across the entire 
distribution of illness. In fact, most recent 
evidence points to reductions in morbidity 
(as measured by self-rated health status and 
performance on the activities of daily living) 
that outstrip the pace of mortality reduction, 
meaning that even as populations grow older, 
they spend a greater proportion of those extra 
years in good health (Crimmins 2004; Payne 
et al. 2007; Robine and Michel 2004). In other 
words, even as prevalence increases due to 
greater survivorship, reductions in the average 
severity of disease may be so great as to reduce 
the overall burden of morbidity (Crimmins 
2004; Mathers et al. 2004). See further 
discussion on this issue in Chapter 7.

Conclusion
Considering the importance of health to us 
individually and as societies, modeling and 
forecasting health outcomes is a remarkably 
new activity. Movement beyond attention to 
life expectancy and age-specific mortality in 
the aggregate to the exploration of future 
multiple-cause mortality extends back only 
about two decades. The Global Burden of Disease 
project broke much important new ground in its 
analyses of causes of mortality and disability 
and in its two major sets of projections, each 
extending about 30 years.

We have been fortunate in being able 
to build significantly on the GBD project’s 
distal-driver approach in our IFs work. There 
is, however, reason to believe that the future 
of forecasting will turn increasingly to a more 
hybrid, integrated analysis of systems, more 
regularly supplementing distal-driver analysis 
with attention to the kind of proximate-driver 
and elaborated structural representations 
that better allow modelers to connect 
forecasting with policy analysis. Moreover, 

almost inevitably there will be increasing 
efforts to integrate health modeling with 
the modeling of demographic and economic 
systems (minimally), and probably with some 
representation of environmental, socio-
political, and other specialized systems, such 
as agriculture and energy. 

We cannot pretend to feel highly confident 
in our efforts to construct and use such a 
hybrid, integrated health model in a broader 
modeling system. Nonetheless, the foundations 
do exist upon which to at least tentatively 
explore the possible futures of global health 
in larger context. The next chapter lays out 
a base case forecast of global health as a 
foundation, before it and subsequent chapters 
turn to exploration of possible alternative 
health futures.

Table 3.2 Percent changes in disability relative to declines in mortality by 
cause in IFs

Percent changes in disability 
with changes in mortality

Communicable diseases

Diarrheal diseases 75

HIV/AIDS 75

Malaria 100

Respiratory infections 100

Other communicable diseases 75

Noncommunicable diseases

Cardiovascular diseases 50

Diabetes 100

Digestive disorders 100

Malignant neoplasms 100

Respiratory diseases 100

Other noncommunicable diseases 100

Injuries

Intentional injuries 75

Road traffic accidents 75

Other unintentional injuries 75

Note: Mortality refers to years of life lost and disability to years of living with disability; IFs also represents 
mental health but does not model a mortality/morbidity relationship for it.

Source: Except for HIV/AIDs, IFs project estimates for communicable and noncommunicable diseases are 
based primarily on Table 6 (page 19) of Mathers and Loncar Protocol S1Technical Appendix [n.d.]; the 
estimates for HIV/AIDs and injuries are IFs project assumptions.
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1	� For introduction to the character and use of the 
model, see Hughes and Hillebrand 2006. 

2	� More technically, the model structure is recursive (it 
computes equations sequentially in each time-step 
without simultaneous solution). It combines features 
of systems dynamics (notably the accounting 
structures with careful attention to both flows and 
stocks) and econometrics (using estimated equations 
for the dynamic behavior of the agent-classes).

3	� The broader population forecasting methodology 
is available at www.census.gov/ population/www/
documentation/twps0038.pdf. The method uses 
fixed-point logistic models.

4	� The full Delphi method involves multiple and 
systematic iterations across a group of experts 
to map (and generally narrow) disagreement and 
establish a central tendency (Gordon and Helmer-
Hirschberg 1964).

5	� Although IIASA historically forecast population by 
global region, it has moved to country and even 
intra-country analysis.

6	� See, for example, Jamison et al. 1993; Jamison et 
al. 2006; Lopez et al. 2006a; Mathers and Loncar 
2006; Murray and Lopez 1996b; WHO 2008a; 2009a; 
and World Bank 1993.

7	� See the individual chapters in the recent Disease 
Control Priorities project report for examples of this 
approach (Jamison et al. 2006).

8	� See http://data.unaids.org/pub/Presentation/2009/ 
20090414_spectrum_2009_en.pdf and also Stover 
et al. 2008.

9	� Similarly, Homer and Hirsch (2006) developed a 
systems dynamics model to explore the role of 
public health systems in prevention and care of 
chronic disease.

10	� It is partly for this reason that the creators of the 
GBD models added exogenous specification of smoking 
impact to the otherwise mostly monotonically (one-
direction only) changing specifications.

11	� We are indebted to Dr. Colin Mathers, who 
generously shared with us his original database and 
regression models and provided responses to our 
many queries about them. We regret and accept full 
responsibility for any errors we may have made in 
our use of them.

12	� Using the GBD historical data, we re-estimated the 
formulation for cardiovascular diseases in order to 
correct for a discrepancy in the direction of the 
coefficient for female smoking at older ages.

13	� IFs represents populations in five-year intervals 
up through 100+, whereas the oldest age category 
in the GBD data combined all ages from 85+. In 
addition, we are able to represent infants separately 
(as well as within the 0–5 age category), and the 
GBD project only included them in the 0–5 group.

14	� The GBD’s detailed death file of mortality rates for 
2004 was provided by Dr. Colin Mathers.

15	� We began by spreading the same death rates for all 
five-year age categories within larger categories, but 
then used smoothing procedures for the initial spread 
so as to represent better the changing patterns of 
mortality by cause of death across five-year categories. 
We normalized the death rates across disease types so 
as to make the total death rates of countries consistent 
with UNPD data for each five-year category.

16	� As we noted earlier, Mathers and Loncar (2006) 
did not separately estimate infants (those under 
one year of age); we used their coefficients for the 
under-five age category for infants also.

17	� We used the UNPD’s 2008 revision for initialization.

18	� Complicating initialization further, the UNPD 
presents its data in five-year ranges, including 
2000–2005 and 2005–2010. The age- and sex-
specific survivor-table values in those ranges 
therefore do not correspond to specific years like 
our base of 2005. After correspondence with Kirill 
Andreev of the UNPD, which we acknowledge 
appreciatively, we decided to average the mortality 
values in the two five-year ranges ending and 
beginning with 2005.

19	� Since Mathers and Loncar did not provide 
coefficients specifically for diarrheal diseases and 
malaria, we use those provided for the more general 
category of infectious and parasitic diseases. They 
provide separate coefficients for gender and seven 
age categories but not region. We calculate the 
adjustment factors in the same way as for other 
diseases, as described later in this chapter.

20	� In theory, if ß > 1 (ß < 1) and the mortality rate 
for the general cause-group increased (decreased) 
sufficiently, the mortality rate for the detailed cause 
could exceed the mortality rate for the general cause-
group. Furthermore, if ß > 1 and the mortality rate for 
the general cause-group decreased, the mortality rate 
for the detailed cause theoretically could fall below 
zero. As these would represent illogical results, we 
checked to make sure that these situations did not 
occur in the actual projections or, if they did, we—as 
Mathers explained to us the GBD researchers did—
adjusted the sum of the specific causes to match the 
projected general cause-group rate.

21	� Mathers and Loncar in their Protocol S1 Technical 
Appendix (n.d.: 8) said that their approach assumed 
25-year time lags between tobacco consumption 
and smoking impact.

22	� The IFs smoking impact forecast is age-cohort 
specific, while our smoking rate is not; thus, 
we needed a weighted average growth rate. The 
weighting used the population-cohort sizes in 
2005.

23	� There is not a one-to-one relationship, of course, 
between smoking rate and smoking impact based 
simply on a lag. Many other factors, including what 
is smoked and how (including frequency), will 
affect smoking impact. Treatment might also be an 
impact, although the GBD time/technology variable 
in the distal formulation could pick up some of 
that. We further understand that our historical 
smoking series is stylized.

24	� The IFs approach does not use an incidence-based 
model, which would be an alternative. Such a 
model would also allow specification of mother-to-
child transmission and of treatment coverage and 
success.

25	� The IFs pre-processor calculates initial rates of 
HIV prevalence and annual changes in it using the 
middle estimates of the UNAIDS 2008 data. When 
middle estimates do not exist, as in the case of the 
Democratic Republic of Congo, it uses an average of 
high and low estimates. The system uses data for 
total population prevalence but also includes HIV 
prevalence for those 15–49.

26	� A more satisfactory approach would use stocks 
and flows and would have a more strongly systems 
dynamics character. It would track infected 
individuals, presumably by age cohorts, but at 
least in the aggregate. It would compute new 
infections (incidence) annually, adding those to 
existing prevalence numbers, transitioning those 
already infected into some combination of those 
manifesting AIDS, those dying, and those advancing 
in age with HIV. But the data do not seem widely 
available to parameterize such transition rates, 
especially at age-category levels.

27	� Table 17 of the Annex to “World Population 
Prospects: The 2002 Revision” (UNPD 2003: 77–78) 
provided such estimates for 38 African countries 
and selected others outside of Africa; the IFs 
project has revised and calibrated many of the 
estimates over time as more data have become 
available. By 2004–2006, however, quite a number 
of countries had begun to experience reductions, 
and this logic has become less important except in 
scenario analysis for countries where prevalence is 
still rising.

28	� Early epidemic data from sub-Saharan Africa and 
the United States supported this assumption.

29	� Dargay, Gately, and Sommer (2007) also describe 
an adjustment factor related to the percentage of a 
total population residing in urban areas; we did not 
implement that factor.

30	� Http://en.wikipedia.org/wiki/Smeed%27s_law. 
See Adams (1987) and Smeed (1949). Others have 
disputed the law.

31	� For each age-sex-cause-specific regression, 
HealthExp% was added and tested for significance. 
After considering Ordinary Least Squares (OLS), 
random-effects, and fixed-effects models, only 
the HealthExp% effect on all-cause mortality for 
the age 0–4 age group was considered sufficiently 
robust. Because HealthExp% effects are specified 
as linear, they could be quite large for countries 
with extraordinarily high levels of HealthExp%, 
particularly when combined with low GDP per 
capita. Few such cases exist within the existing 
distribution, however. For today’s countries with 
GDP per capita below $15,000, HealthExp% has a 
mean of 6.3%, a standard deviation of 1.6%, and a 
range from 2.4% to 10.5%. HealthExp% also tends 
to be somewhat higher for wealthier countries 
in this group. Using the results implied by these 
regressions and sensitivity testing of the IFs base 
model, we find that the effect of a one standard 
deviation change in HealthExp% on 5q0 (about 
2.6% lower) is about one-fifth as large as the effect 
of a one standard deviation change in GDP per 
capita (about a 14% reduction).

32	� “Dictionary of Cancer Terms,” National Cancer 
Institute, http://www.cancer.gov/dictionary/ 
(accessed January 2010).

33	� This is very reasonable for P’(x) by its definition. 
With respect to RR(x), we assume these to be the 
same for all countries unless otherwise specified in 
the CRA reports. Any change over time is likely to 
be picked up in other parts of our model dealing 
with changes in technology and the efficiency of 
health care systems.
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34	� The mortality rate for the residual category 
consisting of measles and other communicable 
diseases is calculated as the difference between 
the mortality rate for the general category 
“communicable diseases other than HIV/AIDS” as a 
whole and the sum of the separate mortality rates 
for diarrhea, respiratory infections, and malaria.

35	� We present further details on these formulations 
in Chapter 5 in the section on undernutrition and 
in the technical documentation of the IFs health 
model at www.ifs.du.edu.

36	� In the sequence of our calculations we decompose 
this equation in practice by finding the individual 
PAFs, computing their individual independent 
effects with (1-PAFDistal)/(1-PAFFull), and 
multiplying mortality independently and 
cumulatively.

37	� In the CRA study on overweight and obesity, James 
et al. (2004: 498) reported that 58 percent of the 
global burden of type 2 diabetes was attributable to 
increases in BMI. Note that the study’s assumption 
of rising BMI rates over time is not always 
replicated in IFs forecasts.

38	� Relative risk estimates taken from Kelly et al. 
(2009).

39	� Dr. Mathers provided us with the GBD project’s 
adjustment factors, which remain constant over 
time in the forecast (although, since smoking 
impact changes over time, SIR does change with 
year). China and a subset of countries in Southeast 
Asia (Bangladesh, Bhutan, Democratic People’s 
Republic of Korea, India, Maldives, Myanmar, and 
Nepal) were treated separately from one another 
and from the single “world” category in which all 
other countries were combined.


