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Abstract
This documentation provides detailed information on the way the Health module has been implemented as an integral part of the International Futures Model (IFs). It discusses initialization, drivers, forecasts and forward linkages.

1. Introduction

International Futures (IFs) is a large-scale, long-term, integrated global modeling system.  It represents demographic, economic, energy, agricultural, socio-political, and environmental subsystems for 183 interacting countries.
 In support of the volume series on Patterns of Potential Human Progress (PPHP), we have added models of education and health.  This document supplements the third volume of the PPHP series, “Improving Global Health,” by providing technical details of health model integration into the IFs system.  
With the inclusion of the health model into IFs, users can now forecast age, sex, and country specific health outcomes related to 15 cause categories out to 2100 (see Table 1).  Based on previous work done by the World Health Organization’s (WHO) Global Burden of Disease (GBD) project
, formulations based on three distal drivers – income, education, and technology – comprise the core of the IFs health model.  However, the IFs model goes beyond the distal drivers, including both richer structural formulations and proximate health drivers (e.g. nutrition and environmental variables).  Integration into the IFs system also allows us to investigate forward linkages from health to other systems, such as the economic and population modules.  Importantly, IFs also allows the user to create customized scenarios, varying drivers in order to examine alternate forecasts out to 2100.
Table 1 – Cause groups in IFs
1. Other Group I diseases (excludes AIDS, diarrhea, malaria and respiratory infections)

2. Malignant neoplasms

3. Cardiovascular diseases
4. Digestive diseases

5. Chronic respiratory diseases

6. Other Group II diseases (excludes diabetes and mental health)
7. Road traffic accidents

8. Other unintentional injuries

9. Intentional injuries

10. Diabetes

11. AIDS

12. Diarrhea

13. Malaria

14. Respiratory infections

15. Mental health

2. Forecasting Base Mortality in IFs
2.1 Distal Driver Formulation

The Health Module runs as an integral part of the IFs model.  In the first year (currently 2005) the Health Module loads initialization data for mortality, morbidity and coefficient factors. For most causes, IFs then forecasts age, sex, cause, and country-specific mortality rates using the regression equation developed for the GBD studies (Equation 1). 
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 (Equation 1)

Where M is Mortality Level in deaths per 100,000 for a given age group a, sex k, cause i and country or Region R.

Y is GDP per capita at PPP 
HC is Years of Adult Education over 25 
T is time 

SI is Smoking Impact 
Income (variable name GDPPCP) and education (variable name EDYRSAG25) are forecast endogenously in IFs.  Time, a proxy for technological progress, is calculated as calendar year – 1900 (for example, T for the year 2001 equals 101).  Smoking impact, a variable meant to capture historical smoking patterns, is included only in the forecasts of mortality related to malignant neoplasms, cardiovascular disease, and respiratory disease.
  As described in section x.x of this document, IFs uses both historical smoking rate estimates and SI projections to 2030 (as provided by GBD authors) to forecast the SI variable.  
Using an historical database representing mortality data from 106 countries for the years 1950-2002, the GBD calculated sex-specific regression coefficients for seven age groups (<5, 5-14, 15-29, 30-44, 45-59, 60-69, and 70+) and nine major cause clusters (Protocol S1, 1-3).
  GBD authors also created separate low and high income regression models, with low income defined as GDPPCP < $3000 in the initial year.  Both sets of coefficients are publicly available online.

We generally use the beta coefficients provided by GBD authors to forecast mortality related to six cause groups: Group I excluding HIV, malignant neoplasms, digestive diseases, other group II excluding diabetes, other intentional injuries, and intentional injuries.  However, for a few age and Group III cause groups where regression models provided low predictive value, we also follow the GBD in keeping mortality rates constant over time instead of using the regression equations.  Affected groups include: unintentional injuries for males older than 70; unintentional injuries for females older than 60; intentional injuries for males and females under 5; intentional injuries for males older than 60; and intentional injuries for females older than 45.  

2.2 Diabetes and Chronic Respiratory Diseases
Two chronic cause groups, diabetes and respiratory, are so strongly influenced by specific risk factors that estimates based on distal drivers alone fail to accurately represent expected mortality rate trajectories.  In the case of diabetes, rising population levels of overweight and obesity contradict suggestions that diabetes-related mortality will fall over time in line with other Group II causes.  Alternately, declining smoking rates in many high income countries may temper initial projections of increasing chronic respiratory-related mortality (Protocol S1, 5-6).  Therefore, IFs follows the GBD methods in modifying the distal driver formulation by adding proximate risk factors (BMI and SI, respectively) to forecast base diabetes- and chronic respiratory-related mortality rates. 

2.2.1 Diabetes 

To forecast diabetes, IFs uses the following formula:
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Da,k,R is diabetes-related mortality by age, sex and region
ONCDa,k,R  is other Group II mortality (derived using Equation 1)

RRa,k,R is a “Diabetes Relative Risk” multiplier

In a population at the “theoretical minimum” level of BMI, where BMI is 21, diabetes-related mortality is expected to fall at 75% of other Group II mortality.
  The diabetes relative risk multiplier (RR) captures the increased risk represented by a population above the theoretical BMI minimum level.  For example, the multiplier is about 1 for young females in Vietnam (where BMI is close to the theoretical minimum level of 21).  Comparatively, the RR is approximately 28 for middle aged women in the United Kingdom where population BMI is much higher.

The GBD project projected the RR variable for diabetes out to 2030 using fairly involved estimates of age and sex-specific levels (plus standard deviations) of population BMI.  Our estimates of future BMI are less sophisticated in IFs, where we only forecast sex-specific mean BMI (see section x.x for discussion on our forecasts of BMI).  As such, while we endogenize the RR variable by tying it to our forecasts of BMI, we also adjust our forecast by initializing RR using the GBD estimates for the year 2005 and computing a shift factor in order to tie our forecast of expected RR with GBD estimates.  

The RR forecast in IFs assumes that BMI is distributed normally, and also assumes a standard deviation of 10% of the mean:
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LogRR is the change in log of RR per 1 unit change in BMI.
  These values are age and sex specific; the absolute relative risk of diabetes-related mortality in relation to a unit increase in BMI varies from between 1.47 (females under 45) and 1.2 (females over 80).

2.2.2 Chronic Respiratory Disease

Again following GBD authors, IFs separately computes the two components of the chronic respiratory disease category - chronic obstructive pulmonary disease (COPD) (where smoking is the overwhelming related risk factor) and “other” respiratory disease (where smoking is somewhat less determinative). Both elements follow the same formulation:
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SIR is the “smoking impact ratio” - smoking impact (SI) divided by an adjustment factor that is specific to age, gender, and three big regions: 1. China, 2. World 3. SearD (Bangladesh, Bhutan, India, North Korea, Maldives, Myanmar, Nepal, Afghanistan, Pakistan).
  RR is the relative risk specific to gender, age and type (COPD or other respiratory disease).
  ONCD_Mort is other Group II-related mortality, again assumed to be declining at 75% of the latter group.

2.3 Mortality related to specific communicable diseases: diarrhea, malaria, and respiratory infections
For detailed cause groups of interest - specifically diarrhea, malaria, and respiratory infection - we developed forecasts based on the larger “other” Group I forecast (see Equation 1):
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M is mortality rate in deaths per 100,000 for a given age group a, sex k, general cause i and country or Region R; and d is the specific disease within cause group i. Here i refers to other communicable diseases (not including HIV/AIDS) and d refers to diarrhea, malaria or Respiratory Infections. The results for these three subtypes are then subtracted from the other Group I category.

Theoretically, the sum of these subcategories could total to greater than the other Group I category as a whole.  As such, IFs limits the sum to 95% of the other Group I category.   If necessary, all three subcategories are reduced proportionally by a factor of 0.95/(SUM(3 subtypes)/Tot(big type)). Note that the denominator will always be higher than 0.95 and then the multiplicative adjustment factor will always be lower than 1.
2.4 Cardiovascular Disease

The regression models used in the GBD project did not differentiate between-subject from within-subject variation.  Particularly for cardiovascular-related outcomes in some age/sex groups, this model produced a perverse finding: a negative relationship between mortality and smoking impact (SI).  However further investigation showed, as expected, a positive relationship between cardiovascular-related mortality and SI within a given country over time.  

As such, we completed a more sophisticated mixed model regression analysis (SAS, version 9.1) to capture both within and between-subject effects.  We used the GBD mortality database described in section 2.1, supplemented by our historical series of income per capita
.  All distal drivers were included as fixed effects, with random effects included for subject (country) and time (T).  The revised coefficients (see Appendix Table 1) were used to forecast cardiovascular disease-related mortality.  We created only one model for all countries (no separate low-income model) due to lack of data.  Comparison with the original GBD models reveals fairly similar forecast outcomes overall.  However, the positive change in the smoking/cardiovascular mortality relationship allows us to better examine how smoking intervention scenarios might impact cardiovascular-related mortality.
2.5 HIV/AIDS

The ultimate objective of the calculations around HIV infections and AIDS is to forecast annual deaths from AIDS (AIDSDTHS) by age category and sex.  We begin, however, by forecasting country-specific values for the HIV prevalence rate (HIVRATE).  For the period from 1990-2007 we have reasonably good data and estimates from UNAIDS (2008) on prevalence rates and have used values from 2004 and 2006 to calculate an initial rate of increase (hivincr) in the prevalence rate across the population (which for most countries is now negative).
 
There will be an ultimate peak to the epidemic in all countries, so we need to deal with multiple phases of changing prevalence:  continued rise where rates are still growing steadily, slowing rise as rates peak, decline (accelerating) as rates pass the peak, and slowing rates of decline as prevalence approaches zero in the longer term.  In general, we need to represent something of a bell-shaped pattern, but one with a long tail because prevalence will persist for the increasingly long lifetimes of those infected and if pockets of transmission linger in selected population sub-groups.
  As a first level of user-control over the pattern, we add scenario specification via an exogenous multiplier on the prevalence rate (hivm).  

The movement up to the peak involves annual compounding of the initial growth rate in prevalence (hivincr), dampened as a country approaches the peak year.  Thus we can further control the growth pattern via specification of peak years (hivpeakyr) and prevalence rate in those peak years (hivpeakr), with an algorithmic logic that gradually dampens growth rate to the peak year:
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t= time (shown in this chapter only when equations reference earlier time points)

r=country (geographic region in IFs terminology)

Names in bold are exogenously specified parameters
As countries pass the peak, we posit that advances are being made against the epidemic, both in terms of social policy and technologies of control, at a speed that reduces the total prevalence rate a certain percent annually (hivtadvr).  To do this, we apply to the prevalence rate an accumulation of the advances (or lack of them) in a technology/social control factor (HIVTECCNTL).  In addition, if decline is already underway in the data for recent years, we add a term based on the initial rate of that decline (hivincr), in order to match the historical pattern; that initial rate of decline decays over time and shifts the dominance of the decline rate to the exogenously specified rate (hivtadvr).  This algorithmic formulation generates the slowly accelerating decline and then slowing decline of a reverse S-shaped pattern with a long tail:   
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Finally, calculation of country and region-specific numbers of HIV prevalence is simply a matter of applying the rates to the size of the population number.
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The rate of death to those with HIV would benefit from a complex model in itself, because it varies by the medical technology available, such as antiretroviral therapy (ART) and the age structure of prevalence.  We have simplified such complexities because of data constraints, while maintaining basic representation of the various elements.  Because the manifestation of AIDS and deaths from it both lag considerably behind the incidence of HIV, we link the death rate of AIDS (HIVAIDSR) to a 10-year moving average of the HIV prevalence (HIVRateMAvg).  We also posit an exogenously specified technological advance factor (aidsdrtadvr) that gradually reduces the death rate of infected individuals (or inversely increases their life span), as ART is doing.  And we allow the user to apply an exogenous multiplier (aidsratem) for further scenario analysis:
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We spread this death rate across sex and age categories. We apply a user-changeable table function to determine the male portion as a function of GDP per capita (at PPP), estimating that the male portion rises to 0.9 with higher GDP per capita.
  To specify the age structure of deaths, we examined data from large numbers of studies on infections by cohort in Brazil and Botswana (in a U.S. Census Bureau database) and extracted a rough cohort pattern (aidsdeathsbyage) from those data. 

2.6 Road Traffic Accidents
Deaths related to road traffic accidents are forecasted structurally, using two variables - deaths per vehicle (DEATHTRPV) and vehicles per capita (VEHICFLPC)  - computed in the Automobile Module of IFs. For this cause group, the structural formulation replaces the GBD regression model based on distal drivers which in general was producing much higher numbers.

The number of deaths per vehicle is based on Smeed’s Law
, an empirical rule originally proposed by R.J. Smeed, which relates deaths to vehicle ownership:
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where D is annual road deaths, n is number of vehicles, and p is population. 
Total vehicles per capita is based on a formula proposed in a paper by Dargay et al (2007):
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where VPC is Vehicles per capita and GDPPCP is GDP per capita at PPP.  RF is an adjustment factor that compensates for different land densities, taking the US as the base: 
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where POP is the population of country R, LANDAREA, the total land area of country R (Dargay et al 2007). The computation was only used when country R had higher density than the US. The paper also describes another adjustment factor related to urbanization as percentage of total population, but we did not use this additional adjustment factor in our model.  
After initialization in base year 2005 (using GBD estimates of road traffic-related mortality and total vehicles from the automobile module in IFs), IFs calculates a multiplicative shift factor that is kept constant for the entire forecast horizon. If this initialization value is greater than 40 deaths per 1000 vehicles, we adjust the number of vehicles per capita to set 40 as our initialization value. We started using this limit after finding inconsistencies between estimates derived from Smeed’s Law and those from initial estimates.

IFs also computes a ratio of traffic accident mortality for males compared to females.   The model compresses that ratio to 1.5 over 100 years by preserving the total mortality for each age category but adjusting the distribution between males and females.
2.7 Mental Health
The IFs model assumes that the initial rate of mortality related to mental health remains constant across our forecast horizon.  That rate is subtracted from the other Group II category.  
2. Normalization and Scaling
IFs initializes the base year (2005) data using age, sex, cause, and country-specific mortality data for 2004 provided by the GBD.  The model then computes normalization and scaling factors which reconcile the results of the forecast regression models with this initial data The normalization factors help match the sum of all mortalities in the health module to the mortality computed in the population module in the base year (2005). The scaling factors help set the historic proportions among the different causes of mortality.
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The normalization factor uses all types of mortality except for AIDS in the numerator and denominator.  The scaling factor uses Equation 1 results for the denominator and GBD 2004 data for the numerator.  Both factors remain constant across the IFs forecast horizon.  
3. Adjusting initialization data for children under 5 and 85+

The 2004 data provided by the GBD, which we use to initialize our model, does not include infant mortality or detailed old-age mortality (greater than 85).  As IFs forecasts both infant mortality and 5-year age categories to 100 years, we incorporate detailed mortality data from Sweden (as a proxy, thanks mainly to availability of data)  in order to initialize Group II (excluding mental health) cause-specific mortality  for these missing populations.  
The first step is to find the weights per age category for Sweden as follows:
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Where j is the smaller IFs age category (for example infants), JJ is the bigger corresponding GBD age category (for example children < 5, which implies the addition of infants plus children 1-4), g is gender, and k is mortality type.

The second step is to check the monotonicity of growth in the existing mortality data for each country and type of mortality (from age 45 forward).  If monotonicity is not found  (ie mortality rates do not rise in step with increasing age groups) then the initialization data is left unchanged for this country and mortality type combination.  If initial mortality does increase monotonically, we further adjust mortality:
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Where j, JJ, g and k are the same as in the previous equation and Pop is the population vector.
4. Mortality Modification (Low Income Model)
We follow the GBD project in modifying the regression models for low-income countries.
  In the default mode (hlmortmodsw = 1), IFs modifies the technology (time) coefficient in recognition of slower than expected historical progress in many countries.  Specifically, for children under 5 in low-income countries in four regions (Africa, Europe, SE Asia and West Pacific) the time variable is held constant (zero, or no technological advance); in low-income countries in the Middle East the coefficient on time is reduced to 25% of its original value.  For adults and older children, the coefficient on time is reduced to 25% of its original value for all low-income countries.  These technology factor modifications can be turned off in the model (hlmortmodsw = 0).
  
To add additional flexibility, IFs includes 3 multipliers: hltechbase = 1, hltechlinc = 0.25 and hltechssa = 0.  These three initial values can be changed to build new scenarios.
  Note that adjustments apply to all types of mortality except for cardiovascular causes (which uses a different regression model for forecasting, as described in section 2.4).
Changes to hltechbase can also be adjusted by using a shift parameter called hltechshift, which adjusts the technology factor depending on the level of initial GDP per capita at PPP. 
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This adjustment increases the technology factor for high income countries more quickly than for middle or low-income countries. 
5. Mortality Transition for Low-Income countries
As described in section 2.1, following the GBD project methodology we use regression coefficients developed separately for low and high income countries.  However, given the long forecast horizon of IFs, we recognize that many low-income countries eventually will reach high levels of income and thus should follow a similar pattern of mortality.  Therefore, we allow low-income countries to transition gradually by computing two mortality rates for low-income countries - one using the low-income beta coefficients and the other using the high-income model. We start the transition when countries reach GDPPCP of $3,000, and finish the transition when countries reach $15,000. The transition is computed finding target mortality in between the two, interpolating depending on the current level of GDPPCP:

High Income Mortality ( $15,000/cap

Target Mortality ( current level of GDPPCP

Low Income Mortality ( $3,000/cap

Given the target mortality, we compute how much change we need from current mortality (low-income based), and slowly adjust using a moving average of 20% of current required change and 80% of change used in previous years:

Change = Target Mortality – Low Income Mortality

Smooth Change = 0.2 * Change + 0.8 * Last Year Change

Final Mortality = Low Income Mortality + Maximum(Smooth Change, Change)
Where Last Year Change = Maximum(Smooth Change(yr-1), Change(yr-1)). 

Note that most of the time target mortality is lower than low income mortality, and thus change is negative.  Thus, when we find the max we’re finding the smaller absolute number and smoothing change.

6. Distal Drivers
The conceptual foundation for GBD forecasting has been the use of broad distal drivers rather than directly causal independent variables; those drivers explain very high proportions of the variation in health outcomes.  The specific distal drivers used for forecasting were GDP per capita (at purchasing power parity - GDPPCP), years of education attainment of adults over the age of 25 (extrapolated from the database of Barro and Lee 1996 – EdYrsAg25), and a time coefficient that in large part captures technological improvement (Year – 1900).
GDPPCP and EdYrsAg25 are forecast endogenously within IFs, for 183 countries and from the year 2005 to 2100.  GDP per capita is computed in the Economic Module, using value added to compute GDP and population as projected in the IFs Demographic Module. The Economic Module represents supply, demand and trade of five economic sectors: agriculture, primary energy, raw materials, manufacturers and services. Adult Education Years is computed in the Education module using government spending on education as the main driver.
7. Proximate Drivers 
While the distal driver regression model represented in Equation 1 implicitly captures many proximate driver impacts, we also recognize the utility of examining how variations in proximate drivers only might change the IFs forecast.  In order to make this comparison we compute the Population Attributable Fraction (PAF) for both versions of the proximate drivers, and then we adjust mortality as follows:
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Where PAF is computed with:
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Where

RR(x) is relative risk at exposure level x;

P(x) is the population distribution in terms of exposure level; and

P’(x) is the theoretical minimum population distribution in terms of exposure level;

PAFFull and PAFDistal are calculated using the population distributions in terms of exposure level based on the full and distal formulations for the specific risk.  

Sometimes more than one risk factor will be linked to a particular disease. In theory, this requires estimating joint relative risks and exposure distributions. Under certain circumstances, however, a simple method can be used to calculate a combined PAF that involves multiple risk factors (Ezzati and others 2004):
PAFcombined = 1 - ∏(1-PAFi)







where

PAFi is the PAF for risk factor i

The logic here is as follows. 1-PAFi represents the proportion of the disease that is not attributable to risk factor i. Multiplying these risks yields the share of the disease that is not attributable to any of the risk factors, and subtracting this from 1 leaves the share of the disease that is attributable to the set of risk factors considered.

Say that we have 2 risk factors:

PAFcombined = 1 - (1-PAF1)(1-PAF2)

Following from the discussion above, the combined adjustment factor can be calculated as:

((1-PAFcombinedDistal) / (1-PAFcombinedFull)) = [(1-PAF1Distal)(1-PAF2Distal)] / [(1-PAF1Full)(1-PAF2Full)]

= [(1-PAF1Distal)/(1-PAF1Full)] * [(1-PAF2Distal)/(1-PAF2Full)]

= [∑RR1(x)P1Full(x)/∑RR1(x)P1Distal(x)] * [∑RR2(x)P2Full(x)/∑RR2(x)P2Distal(x)]

In other words, the combined adjustment factor is a simple multiplication of the individual adjustment factors.
7.1 Undernutrition
Malnutrition affects Other Communicable Disease mortality in children under 5 through our formulation, where we compare the Malnutrition forecast from IFs (based on Calories per capita and access to safe water and sanitation) with results from the following regression based on Distal Drivers (Income and Education):
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Where Y is GDP per capita and HC is years of adult education. This distal driver formulation is initialized using an additive shift factor that makes it equal to data in the first year, as the full model formulation is. This additive shift factor converges to 0 in 100 years. In order to compute the PAF for Malnutrition we assume a normal distribution on weight, where malnourished population is 2 standard deviations below the mean, then we can find a distribution P(x) for each of the 4 levels of malnutrition: 

1. Base line, > -1 standard deviation, RR = 1

2. Mild, -1 to -2 standard deviations, RR = 2.06

3. Moderate, -2 to -3 standard deviations, RR = 4.24

4. Severe, < -3 standard deviations, RR = 8.72

The Relative Risks for these 4 levels are different for Other Communicable Diseases in general (non AIDS), than for Diarrhea, Malaria or Respiratory Infections, and thus we have a different set to compute the PAF for each of these 4 subtypes.

Diarrhea:

1. RR = 1

2. RR = 2.32

3. RR = 5.39

4. RR = 12.5

Malaria:

1. RR = 1

2. RR = 2.12

3. RR = 4.48

4. RR = 9.49

Resp. Infections:

1. RR = 1

2. RR = 2.01

3. RR = 4.03

4. RR = 8.09

7.2 Obesity/BMI 
Obesity/BMI affects Cardio Vascular Disease mortality in adults 30 and older, and we follow the same approach described in section 8 to build an adjustment factor by finding the PAF for both the distal driver formulation and the full model formulation (driven by Calories per Capita). Both the distal driver formulation and the full model formulations are initialized using a multiplicative shift factor to match historic data; these shift factor are kept constant over time.
Full Model Formulations:

Equation 20
Calories per Capita vs Female BMI: 

BMI = 18.73 + 0.00265 CalpCap

Equation 21
Calories per Capita vs Male BMI: 

BMI = 16.54 + 0.00305 CalpCap
Distal Driver Formulations:

Equation 22
Income and Education vs Female BMI:
BMI = 22.7 + 0.46 LN(Y) + 1.36 LN(Ed)

Equation 23
Income and Education vs Male BMI:

BMI = 21.3 + 0.95 LN(Y) + 1.17 LN(Ed)

We assumed BMI has a normal distribution where we forecast the mean, and assume a standard deviation of 10% of the mean. In this case Relative Risk uses a continuous formulation based on BMI level:

Equation 24
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The Constant is different for each age category, going from 1.1965 for 30 to 44 year olds, to 1.02 for 80+ year olds.

Given this continuous formulation of RR and the Normal distribution assumed for the population, measured by BMI in this case, we need to solve Equation 18 to find the PAF. Every element of this equation is equal to an integral that we have solved by approximating the area under the curve using 100 segments that go from -3 standard deviations under the mean to 3 standard deviations above the mean, which accounts for 99% of the total population.
7.3 Water and Sanitation
Water and Sanitation affect Diarrheal disease mortality for all ages, and we’re using the following formulas for the forecast:

Full Model Formulations

Equation 25
No Access to Sanitation: 

NoSanit% = 0.3809 – 0.0579 HealthExp%GDP – 0.3309 LN(Y) – 0.7968 LN(Educ25) + 0.0233 INCOMELT1%
Equation 26
Improved Sanitation: 

ImpSanit% = -1.7235 – 0.0298 HealthExp%GDP – 0.7834 LN(Y) + 0.2591 LN(Educ25) + 0.0195 INCOMELT1%
Equation 27
No Access to Safe Water: 

NoSWat% = -0.936 + 0.02 PopRural% – 0.0891 HealthExp%GDP – 0.8896 LN(Y) – 0.2384 LN(Educ25) + 0.0254 INCOMELT1%
Equation 28
Improved Access to Safe Water: 

ImpSWat% = -1.0409 + 0.0293 PopRural% – 0.1129 HealthExp%GDP – 0.7521 LN(Y) + 0.082 LN(Educ25) + 0.018 INCOMELT1%
Distal Driver formulation:

Equation 29
No Access to Sanitation:

NoSanit% = 0.9875 – 0.8841 LN(Y) – 0.6483 LN(Educ25)

Equation 30
Improved Sanitation (Distal Driver formulation):

ImpSanit% = -1.1191 – 0.9798 LN(Y) – 0.1388 LN(Educ25)

Equation 31
No Access to Safe Water:

NoSWat% = 1.4998 – 1.4532 LN(Y) – 0.5593 LN(Educ25)
Equation 32
Improved Access to Safe Water:

ImpSWat% = 1.6681 – 1.3199 LN(Y) – 0.2643 LN(Educ25)
Where Y is GDP per capita (in PPP terms), Educ 25 is years of adult education, INCOMELT1% is the percentage of people living with less than $1 per day, HealthExp%GDP is Health expenditures as a percentage of GDP and PopRural% is the percentage of the total population living in rural areas.
We use a logit formulation to manage the saturation of the 3 levels of access to either of these 2 services, so that the sum of the 3 levels never goes above 100%. In this logit formulation
 we compute the percentages using the regressions presented, then compute the final results following this method:

Equation 33
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Equation 34
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Equation 35
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Equation 36
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Equation 37
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Where NoSWat% is the Percentage of people with no access to safe water, ImpSWat% is the percentage of people with improved access to safe water and HHSWat% is the percentage of people with household access to safe water. Same method is applied for Sanitation Access.
In order to compute the PAF for Water and Sanitation the distribution of population is computed as follows:

· Category II: minimum of (share of population with HC for water supply, share of population with HC for sanitation)

· Category IV: minimum of (share with improved or HC water supply not in category Vb or II, share with basic or HC sanitation not in category Va or II)
· Category Va: minimum of (share with basic or HC sanitation, remainder of those without improved or HC for water supply that are not already in category VI)
· Category Vb: minimum of (share with improved or HC water supply, remainder of those without improved or HC for sanitation that are not already in category VI)
· Category VI: minimum of (share without improved or HC for water supply, share without improved or HC for sanitation)
Each category has a different Relative Risk associated with it:

Category II: 2.5

Category IV: 6.9

Category Va: 6.9

Category Vb: 8.7

Category VI: 11

The theoretical minimum or international reference is assumed to be 1, and thus the 

PAF equation gets simplified to:

Equation 38
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7.4 Smoking Rate
The first step in Forecasting Smoking Rate (prevalence) in IFs is the generation of Historic Smoking Rate Estimates, which is done in an off-line procedure from Extended Features in the Main Menu. This procedure will fill in the new tables SeriesHealthSmokingMales%SI and SeriesHealthSmokingFemales%SI based on the GBD forecast for Smoking Impact and the Smoking Rate data from the WDI (2006). The procedure starts by finding the most recent data for Smoking Rate and putting it in the respective year, and then using the rate of change in the Smoking Impact GBD forecast 25 years in the future we estimate the remaining years for the historic period between 1980 and 2005. This way if data is found for 2005 we use the rate of change from 2030 to 2029 to estimate the value for 2004, and so on. The Smoking Impact forecast is age specific, while Smoking Rate is not, thus we need a weighted average growth rate. The weight used is the population age categories in year 2005. In case no data is available for a given country, then a Cross-Sectional regression is used for the initialization. These regressions are specific by gender and also used to forecast future behaviour of Smoking Rate. 

The second step is to compute Smoking Rate forecast in the Health module, using the estimated values found for the base year (2005). This step uses the last 10 years of estimated Smoking Rates to compute a compounded growth rate, and then it uses the Cross- Sectional Regressions to compute a simple growth rate between the regression result in the current and previous year. The weighted average of the 2 growth rates, 90% and 10% respectively, is used to compute the final growth rate and applied to the last year estimation.

Equation 39
Compounded Growth Rate for last 10 years
:
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For Female Smoking Rate the regression used is:

Equation 40
SR = 5.6634 + 0.6893 * GDPPCPPP – 0.00573 * GDPPCPPP2
For Male Smoking Rate the regression used is:

Equation 41
SR = 38.3996 + 0.3386 * GDPPCPPP – 0.00224 * GDPPCPPP2
Where SR is Smoking Rate in Percentage, and GDPPCPPPP is GDP per Capita at PPP in Thousands of US$.

These 2 regressions are kept constant after they reach a certain level of GDPPCPPP, for Females that level is $30,000, for Males is $50,000.

In the first year of the Run of the Model an additive shift is computed for both Male and Female Smoking Rates, comparing 2005 values with the 2 regressions above.

For all other years of the Run (not necessary in the first year) Smoking Rate is recomputed using the regressions and the corresponding forecasted value of GDPPCPPP. Then the additive shift is evaluated, if it’s positive (thus producing the forecasted value to be above the expected value given by the regression) or for all non high income countries (initial GDPPCP <= 25k) the shift is converged to 0 over 100 years. If it’s negative and it’s a high income country the shift is kept constant for the entire run horizon. After that the resulting shift is added to the smoking rate produced by the regression.

Using this adjusted regression result the simple growth rate is computed (10%), and combined with the compounded growth rate for the last ten years (90%), we find the moving average of the growth rate, and apply it to the previous year forecast.

Equation 42
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Equation 43
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Equation 44
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This Smoking Rate result (SRE) is then converged to match the result of the regression equation in the years left to 100:

Equation 45
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High income countries ((initial GDPPCP > 25k) then are checked to avoid growth on their Smoking Rate after they have started to drop, i.e:

If GDPPCPI > 25k and SREyr > SREyr-1 and SREyr-1 <= SREyr-2 then



SREyr = SREyr-1
End if

Finally the Smoking Rates for Males and Females are affected by a multiplier, which by default is 1. These multipliers are country and gender specific, and can be used to create different scenarios. Note that having a multiplier for a specific gender, say 0.9 for Males, and another for Total, 0.8, will produce a multiplicative effect on the forecast of 0.72.

7.5 Smoking Impact
Following the assumption that we used to build the historic estimate for smoking rate, we build the Smoking Impact forecast further and beyond year 2030. We compute the simple growth rate for Smoking Rate 25 years in the past, and apply it to each of the age categories of Smoking Impact, using the GBD starting point.

Equation 46
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This assumption makes all different age categories of Smoking Impact to have the same growth rate, which makes each individual age category different from the original GBD forecast (between 2005 and 2030), but on average the differences cancel out. Furthermore, this growth rate is not automatically transmitted to the total (age) category, and the reason is that we use a population weighted average to compute it, and given that in general the population is getting older, and most of the time Smoking Impact is higher for older age categories, then the growth rate for this total category is usually higher than then growth rate for each of the individual age categories.

It is also important to note that it is possible to stop the growth of Smoking Impact forecast in year 2030 and beyond by turning off the smoking impact switch, hlsmimpsw = 0.

7.6 Indoor air pollution
We use the percentage of people using solid fuels as their primary source of energy, ENSOLFUEL, as our proxy for indoor air pollution. Indoor air pollution affects Respiratory infections for children under 5 and Respiratory Diseases for adults over 30.
The distal driver formulation for ENSOLFUEL uses the following formula:

Equation 47
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We use a multiplicative shift factor to match initialization data in the first year, and keep it constant in our forecast. The WHO (Desai and others 2004) adjusts the percentage of population exposed to indoor smoke from solid fuels by a ventilation coefficient that ranges from 0 to 1. A coefficient of 0 indicates no exposure to pollutants from solid fuel use, whereas a coefficient of 1 indicates full exposure. These are the coefficients that we’re currently using:
	Recommended Ventilation Coefficients to use in Conjunction with Percentage of Population Exposed to Indoor Smoke from Solid Fuels

	Country
	Ventilation Coefficient

	Albania, Belarus, Bosnia & Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Macedonia, Moldova, Poland, Romania, Russia, Slovakia, Slovenia, Ukraine, Yugoslavia (Serbia and Montenegro)
	0.20

	China
	0.25 for children; 0.50 for adults

	All Others
	1.0

	·  From Desai and others (2004).


Since in the case of indoor air pollution there are only 2 categories – exposed or not exposed, in which case RR = 1, then the mortality effect in Equation 17

 can then be simplified to:

Equation 48
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Where P is the percentage of population exposed to indoor smoke from solid fuel, adjusted for ventilation; and RR is the relative risk for the exposed population
. The values for the RRs for specific health outcomes and population groups are shown in the table below:
	Relative risk estimates for Mortality from Indoor Smoke from Solid Fuels

	Health Outcome
	Groups Impacted
	Relative Risk

	Respiratory Infections
	Children under 5
	2.30 (1.90, 2.70)

	Respiratory Diseases
	Females over 30
	3.20 (2.30, 4.80)

	
	Males over 30
	1.80 (1.00, 3.20)

	· From Desai and others (2004)

· 95% confidence intervals in parentheses


7.7 Outdoor air pollution
We use PM 2.5 concentration in urban areas, ENVPM2PT5 , as a proxy for outdoor air pollution. Outdoor air pollution affects Respiratory Infections, Respiratory Disease and Cardiovascular disease for adults 30 or older.
The distal driver formulation for ENVPM2PT5 uses the following formula:

Equation 49
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Where Y is income expressed as GDPPCP, HC is human capital expressed as Adult Education Years (above 25 years of age), T is time expressed as the current year, and GDSHealth%GDP is the government expenditures in health as a percentage of GDP. The first formula return PM10 concentration levels which then are converted to PM2.5 using a conversion factor. The WHO (Ostro 2004 and EBD spreadsheet) recommends the following conversion factors:
· 0.5 for Developing countries outside of Europe

· 0.65 for Developed countries outside of Europe

· 0.73 for European countries

In the case of Outdoor air pollution we can assume that all persons in urban areas are exposed to the same level of air pollution and therefore the same relative risk. Therefore we can simplify the mortality effect in Equation 17

 as follows:
Equation 50
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Where the recommended value for β is 0.1161
.

8. Adjusting J-curves to produce monotonically increasing graphs for Non Communicable Disease when possible

In general we try to maintain monotonicity in growth by adjusting the problematic type and compensating in a second type with room to keep total mortality constant. We also preserve the total number of deaths per type by readjusting the next age category of the same type, decreasing the first one and increasing the second one, while doing the opposite in the second type. Finally we try to keep the adjustments as small as possible to have a smaller impact on mortality by age category.

Specifically, for each country we find the type (H1) with the highest mortality rate (in the 100+ category among non communicable disease), then we try to use H1, which  many times turns out to be Cardio Vascular disease, to compensate adjustments in other types in order to keep Total Mortality constant for the same age category. 

For each age category starting at 45 to 49, we compute total mortality as the sum of all types, then for each non communicable type with non 0 mortality we compute its growth G from the current age category j to the next j+1, for example in the first case from 45-49 to 50-54. For the same ages we find the Proxy growth P, where we use Sweden’s mortality for each type, but we don’t allow this P to be higher than 1/4th of Total Mortality Growth. IF G is smaller than P then we start the procedure for the given age category j and type of mortality k.

Once we start the adjustment procedure we check if there’s room to reduce mortality in the current age and type, so we check growth from the previous age category to avoid breaking monotonicity. First we compute Proxy Growth P1 from the previous age category j-1 (40-44 for our example) to the current one j (45-49). Second we compute the minimum acceptable value for current mortality:

Equation 51
Min = Mort(j-1, R, k)*(1+P1)

Where Mort(j-1, R, k) is the mortality for country R, type k in age category j-1. Third we compute maximum acceptable value for current mortality, we start with:

Equation 52
Max = Mort(j+1,R,k)/(1+P)

But we know that Mort(j+1,R,k) is also going to change to keep the number of deaths constant, so we also consider this adjusment:

Equation 53
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And we know that:

Equation 54
Adj = Mort(j,R,k) – max

Solving for max, we have:

Equation 55
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Where Mort is the original mortality for age category j and j+1, region R, and type k. Pop is population for age j and region R and P is the Proxy Growth computed as explained above.

If Min is smaller than Max, then we use Max as the new mortality in age j, in order to keep the adjustment as small as possible, if not that means that Max wouldn’t keep monotonicity from age j-1, so we start trying to adjust going backwards, given that frequently there’s more room in previous age categories. In order to start going backwards we keep track of the first age category that it’s already saturated, i.e. that its growth is already the minimum possible without breaking monotonicity. If we find that the first saturated category is higher than the 45-49 that we started with, that means we have some room going backwards, so we take Max, otherwise we use Min as the new mortality in age j, and keep adjusting forward. The adjustment A is just the difference between original mortality in age j and the new chosen mortality.

Adjust backwards means that we’ll adjust mortality in age category j2 and j2-1, where j2 goes from j-1 to 10 (which corresponds to 45-49). While going backwards the formulas for min and max change a little bit, given that the adjustment is done in the previous age category. 
Equation 56
Min = (Mort(j2-1, R, k)+Adj*Pop(j2)/Pop(j2-1))*(1+P1)

And substituting the adjustment from Equation 54

 we end up with:

Equation 57
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Max gets simplified to:

Equation 58
Max = (Mort(j2+1, R, k)/(1+P)

We then check for room in type H1, and if there’s enough room we adjust mortality for j2. If Min <= Max then we can stop, otherwise we keep going back until we reach the 45-49 category.

Fourth, we verify that, in doing compensation for type H, monotonicity is preserved too. In order to make this verification first we find the potential growth rate GH after applying adjustment A to type H. Then we compute the Proxy Growth PH for type H. If GH is greater or equal than PH then we can apply the adjustments if not we just leave mortality unchanged.

Fifth, applying the adjustments to type k by subtracting the adjustment from the original mortality in age j for type k, and adding it up adjusted for deaths to the original mortality in age j+1 for type k:

Equation 59
Mort(j,R,k) = Mort(j,R,k) – Adj

Equation 60
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Sixth, applying the adjustments to type H by adding the adjustment to original mortality in age j for type H, and subtracting it adjusted for deaths from the original mortality in age j+1 for type H:

Equation 61
Mort(j,R,H) = Mort(j,R,H) + Adj

Equation 62
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Seventh, if Min is greater than Max and we couldn’t go backwards means that we took Min as the new mortality for age k, and it means that we still don’t have monotonicity because we haven’t changed age j+1 yet.  Then we need to find the new mortality value for j+1 using Proxy Growth:

Equation 63
Newmort = Mort(j,R,k) * (1+P)

Equation 64
Adj = Newmort – Mort(j+1,R,k)

Eight, we check that this new adjustment doesn’t break monotonicity in type H, if it doesn’t we apply it as we did for age j, if does break it, we just leave mortality unchanged.

Ninth, applying this adjustment is the same as step 5 and 6, but using ages j+1 and j+2 instead of j and j+1. The only difference here is that when we get to the second to last age category (j = 20, 95-99), then the compensatory adjustment for deaths is done in the first age category of the loop (j=10, 45 to 49), and we restart the process for a second and final check of monotonicity.

We have added check limits along the process to avoid mortality to go above 1000 and below 0 at all times, and if the limits are reached then mortality is left unchanged.

9. Elasticity with Spending on Health

For countries that have a GDP per capita in the initial year of less than $15,000 an elasticity factor with health spending (elhlmortspn) of -0.06 will affect mortality of children under 5.  That is, each 1% change in health spending as a percentage of GDP will lower mortality by 0.6%; an increase of 100% (doubling) would produce an automatic reduction of  6% in mortality. We have implemented a limit on the reductions to be at most 80% of mortality.
The GBD project’s distal driver formulation does not take public health spending into account.  However, we add a term to the basic GBD distal driver formulation to incorporate public health spending as a proximate driver to account for the relatively consistent inverse relationship between  total public health expenditures and child mortality rates in poor countries (Anand and Ravallion 1993; Bidani and Ravallion 1997; Jamison et al. 1996; Nixon and Ulmann 2006; Wagstaff 2002). For countries having a GDP per capita (at PPP) of $15,000 or less, our model applies a simple elasticity for the effects of government health expenditure as a percentage of GDP on all-cause mortality for the age 0-4 group from the distal driver formulation (the base calculation that health expenditures adjust):  
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where 
[image: image50.wmf]0

5

q

is the mortality rate for age 0-4. 

In IFs this formalized version becomes
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In this calculation we use health expenditure as a percentage of GDP, rather than health expenditure per capita, to avoid any confounding with the distal driver for GDP per capita. We established this coefficient for all-cause mortality in the 0-4 age category on the basis of multivariate regressions using the GBD distal driver specifications as a base model and compared it with the results of existing studies (Anand and Ravallion 1993; Filmer and Pritchett 1999; Wagstaff 2002).
  
10.  Outcomes

There are 2 main outcomes of the Health Module, one is deaths by category (DEATHCAT) and the other one is Life Expectancy (Health Module version, LIFEXPHLM). Other outcomes include YLL, YLD, DALY, YLLWORK, YLDWORK, DALYWORK and probability of dying as adult or children. Besides these outcomes, there’s also the option to connect the health module to the rest of the model, by saving DEATHCAT into DEATHS and LIEXPHLM into LIFEXP, this will produce changes in Population, Economy and all areas of the model. This is done by turning on the parameter called hlmodelsw, which is now on (set to 1) by default.

The computation of Life expectancy in the Health Module is a replica of the one in the Population Module, and the only difference is the mortality distributions, which in the initial year match because of the normalization process, but they grow apart as the model advances. 

Deaths by category are computed by multiplying the new mortality distribution from the Health Module, times the Population age categories. The results are stored in a variable named DEATHCAT, and they match the values for DEATH in the first year because of the normalization process.

10.1 Years of Life Lost (YLL)
Each of the 22 age categories has an average age, which is the middle point, for example for infants, that’s 0.5 years, for children 1 to 4 is 2.5, for children 5 to 9 is 7, for children 10 to 14 is 12, and so on. We don’t really use all 22 age categories, because we stop computations at the age category where the highest life expectancy of the system corresponds. That highest life expectancy is currently Japan’s 82.69, and thus the latest age category used is the 80 to 84, consequently the average age in this last category is 81.35, which is the middle point between the maximum and the lower limit.

Years of Life Lost is computed using the number of deaths in each age category multiplied by the number of years they lost on average, which is the maximum life expectancy minus the average age of their respective category. 

Equation 65
Years of Life Lost = Deaths in age category * (MaxLifeExp – Avg. Age in age category)

There are 2 extra elements that are considered in the computation of Years of Life Lost. The first one is Discounting and the second one is age weighting. Discounting represents time preference (individuals prefer benefits now rather than in the future), in general associated with economic cost of opportunity. Age weighting is an attempt to capture different social roles at different ages, where ages in the middle are more heavily weighted than children or older adults. These 2 elements are controversial but have been used by the GBD studies, and therefore they’re useful for standard comparisons.
In the last age category, only a portion of the deaths are considered, since the Maximum age used is in the middle of the category. Finally we add up all years of life lost across all age categories.

If we initially considered that the number of years lost per each death is MaxLifeExp – Avg. Age in age category (part of Equation 65

), then we now need to use the following formula to apply both discounting and age weighting:

Equation 66
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Where AWC is the age weighting correction factor (0.1658), this constant compensates so that the global estimated burden of disease remains the same as if not using age weighting. β is the parameter from the age weighting function (0.04). This 2 constants are related and if you want to change the form of the weighting function by changing β, then you would have to change AWC too. MaxLE is the Maximum Life Expectancy in the system, and finally r is the Discount Rate, which we have set to 3% to match the GBD study.
Years of Life Lost for working age is the same concept but only considers working years, and those are from 20 to 64 in IFs.
10.2 Years of Life Lost to Disability (YLD)

In order to compute disability in terms of YLDs we use the ratio of regional YLDs to YLLs (YLD/YLL), based on WHO data. This ratio is used for initialization and then the growth rate for mortality is computed and applied to forecast morbidity. Morbidity results can then be adjusted with a multiplier (hlmorbtomortgthport) that can be handled by the user across time. This multiplier is specific for each subtype, and the default values are detailed in the following table, for example for for Cardio Vascular it is set to 0.5, which means that for one unit of decrease in mortality, morbidity only decreases 0.5 units.

	Group I
	Percentage

	Diarrhea
	75

	Malaria
	100

	Respiratory
	100

	Other communicable
	75

	HIV/AIDS
	Modeled separately

	Group II
	

	Cardiovascular 
	50

	Digestive disorders
	100

	Malignant neoplasms
	100

	Diabetes
	100

	Mental health
	0

	Chronic respiratory
	100

	Other NCDs
	50

	Group III
	

	Intentional injuries
	75

	Traffic accidents
	75

	Other non-intentional injuries
	75


Table 2 Percentage decline in disability (YLDs) relative to decline in mortality (YLL)
Once morbidity is computed, the calculations to find Years of life lost to disability are identical to the ones for YLL, only using morbidity instead of mortality to compute the number of people affected by the given disease (instead of killed by the disease). Same logic applies to compute the working age version of YLD, only using the respective age categories.

The only exception to this methodology is Mental Health, given that we’re not computing mortality for mental health, we can’t compute morbidity based on mortality. We instead use a ratio of YLD/POP based on WHO data, the ratio is used for initialization and is kept constant across time.
10.3 Disability adjusted life years (DALY)

DALYs are computed by adding up YLLs and YLDs together, same for the working age version of DALYs.

10.4 Probability of dying

The probability of dying at an adult age, say between 15 and 59, its equivalent to 1 - the cumulative probability of surviving (lx) at 59 given the person has survived to 15.

Equation 67
P(15-59) = 1 – lx(59) / lx(15)
In order to compute lx at age j we need to consider the cumulative effect of the previous age category and the probability of death in the current age category (nqx). Also lx(0) is assumed to be 1, given that we’re only considering deaths for people that are born alive.
Equation 68
lx(j) = lx(j-1) * (1 - nqx)

The probability of death at the current category is computed based on the mortality of the age category nMx, the number of years in the given category N (5 for most of the IFs age categories except the first 2), and the average years lived within the same category nax, which in most cases is 2.5, but can be lower for shorter age categories. 
Equation 69
nqx = (N * nMx) / (1 + ((N - nax) * nMx))

This adjustment is necessary because nMx is the mortality rate of the 5 year period and it’s not the same for each of the 1 year periods within it. The mortality rate nMx already considers that some people die in the middle of the period, which we don’t need for the probability nqx, which is why in general probabilities are lower than mortality rates, which is a bigger deal for older ages where people tend to die earlier in the age category.
Although the infant age category is a shorter period, in fact the rate correction is in some ways a bigger issue, because infants who die tend to die very early in their life. The basic framework for understanding nax in this category is thus that the higher the mortality, the higher the average years lived nax. Basically, in Sweden any infant who dies is going to die in the neonatal period, so nax is almost = 0. In Congo infant mortality takes place throughout the year, though still concentrated in the neonatal period, so nax goes up pretty consistently with nMx.  This has been implemented in the following way:
'Average years lived by those who die (per Keyfitz) for Infants
            If nMx >= 0.107 Then

            
nax = 0.34

Else

            
nax = 0.049 + 2.742 * nMx

With estimating nax for children 1 to 4 then, the logic becomes that child deaths between age 1 and 5 are kind of a prolonged extension of infant mortality. Estimations have thus shown that nax is more directly tied to infant mortality than it is to nMx for its own age category. In other words, place that see very high infant mortality are also going to see a lot of child deaths, mostly concentrated in the age 1 - 2 age range, so as infant mortality goes up, early childhood mortality goes up, pulling nax away from 2.0. 
'Average years lived by those who die (per Keyfitz) for children 1 to 4

If infMort >= 0.107 Then

nax = 1.356

 Else

            
nax = 1.587 - 2.167 * infMort

 

11. Forecasting Stunting

HLSTUNT (by region), is the percentage of the total population that is affected by childhood malnutrition.  

To initialize HLSTUNT in the preprocessor, we’re tying it to the initial conditions of MALNCHP (Malnutrition for Children in Percentage) in 1980.  Given that we don’t have good historic data for malnutrition, we’re using the following function: “GDP/capita (PPP 2000) Versus Malnutrition (2000) Power”:
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Using GDP2005PCPPP as our primary source of income data. First we find the result of this function with GDPPC numbers from 2005, then we compute an additive shift factor to match initialization data for MALNCHP(2005).  Second we compute the result of the function with GDPPC from 1980, then apply the shift factor, and that’s our HLSTUNT for 2005. We use a limit of 80% for the maximum possible stunting value. 

For forecasting, we’re using an extremely slowly moving average.  
HLSTUNT(t)=(HLSTUNT(t-1) * 24 + MALCHP(t))/25. 

12. Scenario Analysis

Explain the scenarios in the health model (all)

Appendix

Appendix Table 1 – Cardiovascular Beta Coefficients

	Sex
	Age
	Variable
	Estimate

	Female
	30-44
	Intercept
	-0.56708

	
	
	LnGDPPCP
	1.434976

	
	
	LnGDPPCP2
	-0.08148

	
	
	LNSI
	0.013229

	
	
	T
	-0.02083

	
	
	LnEdYrsOver25
	-0.26159

	
	45-59
	Intercept
	-4.14287

	
	
	LnGDPPCP
	2.535495

	
	
	LnGDPPCP2
	-0.14355

	
	
	LNSI
	0.027787

	
	
	T
	-0.0211

	
	
	LnEdYrsOver25
	-0.06727

	
	60-69
	Intercept
	1.394147

	
	
	LnGDPPCP
	1.557257

	
	
	LnGDPPCP2
	-0.08679

	
	
	LNSI
	0.01519

	
	
	T
	-0.01879

	
	
	LnEdYrsOver25
	-0.14311

	
	70+
	Intercept
	-2.42923

	
	
	LnGDPPCP
	2.718893

	
	
	LnGDPPCP2
	-0.16091

	
	
	LNSI
	0.011117

	
	
	T
	-0.01162

	
	
	LnEdYrsOver25
	0.202314

	Male
	30-44
	Intercept
	-7.10273

	
	
	LnGDPPCP
	2.706356

	
	
	LnGDPPCP2
	-0.14545

	
	
	LNSI
	0.024695

	
	
	T
	-0.01319

	
	
	LnEdYrsOver25
	-0.09248

	
	45-59
	LnEdYrsOver25
	-0.09248

	
	
	Intercept
	-6.23361

	
	
	LnGDPPCP
	2.829483

	
	
	LnGDPPCP2
	-0.15151

	
	
	LNSI
	0.061432

	
	
	T
	-0.01513

	
	
	LnEdYrsOver25
	0.021862

	
	60-69
	Intercept
	-1.48587

	
	
	LnGDPPCP
	2.077141

	
	
	LnGDPPCP2
	-0.11296

	
	
	LNSI
	0.040964

	
	
	T
	-0.01443

	
	
	LnEdYrsOver25
	0.055058

	
	70+
	Intercept
	-0.41857

	
	
	LnGDPPCP
	2.188262

	
	
	LnGDPPCP2
	-0.12904

	
	
	LNSI
	0.061957

	
	
	T
	-0.01231

	
	
	LnEdYrsOver25
	0.22355
































� For introduction to the character and use of the model, see Hughes and Hillebrand (2006).  


� See Mathers and Loncar (2006) for details on GBD projections of cause-specific mortality out to 2030.


� Mathers and Loncar 2006 


� See Protocol S1, Mathers and Loncar 2006 for more detail on the use of smoking impact in GBD projections.


� See Table 1, Protocol S1, for the cause clusters used in the GBD 2002 and 2004 projections.


� For regression results, see Tables S3 and S4 at http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.0030442#s5.


� The slower decrease in diabetes-related mortality reflects assumptions that risk factors for diabetes will improve more slowly that risk factors for other Group II diseases (Protocol S1, 6).


� All RRs available in the IFs system, variable name HLDIABETESRR.


� We recognize, of course, that BMI is most likely not distributed normally in a population.  However, we follow CRA authors in assuming normality in order to compare a given population with an ideal counterfactual population (James et al 2004).  


� WHO Comparative Risk Assessment Methodology, Kelly et al, 2009


� See associated data table, Kelly et al 2009.


� GBD authors provided the adjustment factor for SIR, and it is constant over the length of the IFs forecast.


� RR ranges from approximately 10 for COPD to about 2 for other chronic causes.  Again, GBD authors provided the relative risk estimates used in IFs.  


� Note that we did use historical estimates of education provided by the GBD project, instead of using the less complete historical series available through IFs.  Future distal driver analysis may explore using alternate sets of education data, including those included in the IFs system.  


� The IFs pre-processor calculates initial rates of HIV prevalence and annual changes in it using the middle estimates of the UNAIDS 2008 data.  When middle estimates do not exist, as in the case of the Democratic Republic of Congo, it uses an average of high and low estimates.  The system uses data for total population prevalence, but also includes HIV prevalence for those 15-49. 


� A more satisfactory approach would use stocks and flows and have a more strongly systems dynamics’ character.  It would track infected individuals, presumably by age cohorts, but at least in the aggregate.  It would compute new infections (incidence) annually, adding those to existing prevalence numbers, transitioning those already infected into some combination of those manifesting AIDS, those dying, and those advancing in age with HIV.  But the data do not seem widely available to parameterize such transition rates, especially at the age-category level. 


� Table 17 (pp 77-78) of the Annex to World Population Prospects: the 2002 Revision (UNPD 2003) provided such estimates for 38 African countries and selected others outside of Africa; the IFs project has revised and calibrated many of the estimates over time as more data have become available.  By 2004-2006, however, quite a number of countries had begun to experience reductions, and this logic has become less important except in scenario analysis for countries where prevalence is still rising.


� Early epidemic data from sub-Saharan Africa and the United States supported this assumption.


� � HYPERLINK "http://en.wikipedia.org/wiki/Smeed%27s_law" ��http://en.wikipedia.org/wiki/Smeed%27s_law�


Smeed, RJ 1949. "Some statistical aspects of road safety research". � HYPERLINK "http://en.wikipedia.org/wiki/Royal_Statistical_Society" \o "Royal Statistical Society" �Royal Statistical Society�, Journal (A) CXII (Part I, series 4). 1-24.


Adams 1987. � HYPERLINK "http://www.geog.ucl.ac.uk/~jadams/PDFs/smeed's%20law.pdf" \o "http://www.geog.ucl.ac.uk/~jadams/PDFs/smeed's%20law.pdf" �"Smeed's Law: some further thoughts."� Traffic Engineering and Control (Feb) 70-73


� Dargay, Gately, and Sommer 2007. “Vehicle Ownership and Income Growth, Worldwide: 1960-2030”. Joyce Dargay, Dermot Gately and Martin Sommer, January 2007.


� The case of Bangladesh is illustrative, where the forecast calculation of 141 deaths/thousand vehicles contrasts with an expectation of 30 deaths/thousand vehicles  using Smeed’s Law.  We concluded that our mortality figures were consistent with WHO estimates, but sometimes the total number of vehicles was too low.  For example, for Bangladesh our data showed 1 vehicle per thousand people, which meant about 141,000 vehicles, when several reports indicate the real number is much higher (850,000) (� HYPERLINK "http://www.brta.gov.bd/pdf/Statistics%202005.pdf" ��http://www.brta.gov.bd/pdf/Statistics%202005.pdf�).





� GBD made low-income modifications after recognizing that historical child mortality data did not match back projections of the model (Protocol S1, 9).  Note that the GBD approach to these modifications changed from the 2002 revision to the 2004 revision of the project. In the 2002 revision, the human capital (education) beta was reduced to half of its magnitude for Sub-Saharan countries, and to 75% of its original magnitude for other low-income countries. This was done only if the HC beta was negative (reducing mortality with increases in education).  Technological advance factor (time) was left constant (no advance) for SSA and reduced to 25% for other low income countries.  The 2004 revision dropped the human capital modifications, but continued to reduce the coefficient on time.


� IFs also allows the user to use the original GBD 2002 modifications (as described in the previous footnote) by specifying hlmortmodsw = 2.


� Given the results found for Intentional Injuries, where mortality was reaching unrealistic levels, we have limited the changes to hltechbase and hltechlinc to at most 1.5, for the 2004 revision (hlmortmodsw = 1).


� In the sequence of our calculations we decompose this equation in practice by finding the individual PAFs, computing their individual independent effects with (1-PAFDistal)/(1-PAFFull), and multiplying mortality independently and cumulatively.  


� For more detail on this formulation please refer to “Formulae for Predicting Shares 23 Feb 2009.doc” by Dale Rothman.


� Data is used in the first 10 years, then forecast is used.


� More information is available on Dale’s documents: Incorporating Indoor Air Pollution 9 October 2009.docx


� More Information on Dale’s document “Incorporating Outdoor air pollution 5 October 2009.docx”


� For each age-sex-cause-specific regression, HealthExp% was added and tested for significance. After considering Ordinary Least Squares (OLS), random-effects, and fixed-effects models, only the HealthExp% effect on all-cause mortality for the age 0-4 age group was considered sufficiently robust.  Because HealthExp% effects are specified as linear, they could be quite large for countries with extraordinarily high levels of HealthExp%, particularly when combined with low GDP per capita. Few such cases exist within the existing distribution, however. For today’s countries with GDP per capita below $15,000, HealthExp% has a mean of 6.3%, a standard deviation of 1.6%, and a range from 2.4% to 10.5%.  HealthExp% also tends to be somewhat higher for wealthier countries in this group. Using the results implied by these regressions and sensitivity testing of the IFs base model, we find that the effect of a one standard deviation change in HealthExp% on � EMBED Equation.3 ���(about 2.6% lower) is about one-fifth as large as the effect of a one standard deviation change in GDP per capita (about a 14% reduction).
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